
CommCareHQ Documentation
Release 1.0

Dimagi

Jan 30, 2024

OVERVIEW

1 CommCare HQ Platform Overview 3

2 CommCare Architecture Overview 9

3 CommCare Enhancement Proposal Process 15

4 Application terminology 17

5 Features 19

6 Bulk Application Translations 21

7 Multimedia 23

8 Adding a new CommCare Setting 27

9 CommCare Settings Config Spec 29

10 App Navigation Features 31

11 The Suite 39

12 Syncing local HQ instance with an Android Phone 45

13 Directly Modifying App Builds (CCZ files) 49

14 Adding CommCare Builds to CommCare HQ 51

15 Web Apps JavaScript 53

16 Formplayer in HQ 63

17 Device Restore Optimization 69

18 Locations 75

19 Reporting 77

20 Reporting: Maps in HQ 83

21 Exports 89

22 Change Feeds 91

i

23 Pillows 95

24 Monitoring Email Events with Amazon SES 107

25 User Configurable Reporting 109

26 UCR Examples 163

27 Data source filters 165

28 Data source indicators 167

29 Base Item Expressions 173

30 Report examples 181

31 Charts 183

32 UCR FAQ 185

33 Messaging in CommCare HQ 187

34 API 199

35 CommCare FHIR Integration 201

36 The MOTECH OpenMRS & Bahmni Module 213

37 How Data Mapping Works 233

38 General Overview 243

39 Architecture 245

40 Local Setup 247

41 Adding a New Identity Provider Type 251

42 Internationalization 255

43 UI Helpers 261

44 Using Class-Based Views in CommCare HQ 269

45 Forms in HQ 275

46 Dimagi JavaScript Guide 277

47 Testing infrastructure 305

48 Testing best practices 307

49 Analyzing Test Coverage 309

50 Mocha Tests 311

51 Writing tests by using ES fakes 313

52 Profiling 315

ii

53 Caching and Memoization 321

54 Plugins 327

55 CommTrack 329

56 Elasticsearch 331

57 Middleware 369

58 Using the shared NFS drive 371

59 How to use and reference forms and cases programatically 373

60 Playing nice with Cloudant/CouchDB 377

61 Celery 379

62 Configuring SQL Databases in CommCare 385

63 Metrics 391

64 CommCare Extensions 407

65 List Extension Points 411

66 Custom Modules 413

67 Migrations in Practice 415

68 Auto-Managed Migration Pattern 421

69 Migrating Database Definitions 425

70 Migrating models from couch to postgres 429

71 1. Record architecture decisions 435

72 2. Keep static UCR configurations in memory 437

73 3. Remove warehouse database 439

74 Documenting 441

75 Indices and tables 445

Python Module Index 447

Index 449

iii

iv

CommCareHQ Documentation, Release 1.0

CommCare is a multi-tier mobile, server, and messaging platform. The platform enables users to build and configure
content and a user interface, deploy that application to Android devices or to an end-user-facing web interface for
data entry, and receive that data back in real time. In addition, content may be defined that leverages bi-directional
messaging to end-users via API interfaces to SMS gateways, e-mail systems, or other messaging services. The system
uses multiple persistence mechanisms, analytical frameworks, and open source libraries.

Data on CommCare mobile is stored encrypted-at-rest (symmetric AES256) by keys that are secured by the mobile
user’s password. User data is never written to disk unencrypted, and the keys are only ever held in memory, so if a
device is turned off or logged out the data is locally irretrievable without the user’s password. Data is transmitted from
the phone to the server (and vis-a-versa) over a secure and encrypted HTTPS channel.

Contents:

OVERVIEW 1

CommCareHQ Documentation, Release 1.0

2 OVERVIEW

CHAPTER

ONE

COMMCARE HQ PLATFORM OVERVIEW

The major functional components are:

• Application Building and Content Management

• Application Data Layer

• Tenant Management

• Analytics and Usage

• Messaging Layer

• Integration

3

CommCareHQ Documentation, Release 1.0

1.1 Application Content Layer

1.1.1 Application Building and Deployment Management

The Application Builder provides an interface for users to create and structure an application’s content and workflow.
Questions can be added by type (text, integer, multiple answer, date, etc.) and logic conditions can be applied to
determine whether the question should be displayed or if the answer is valid.

This environment also provides critical support for detailed management of content releases. CommCare’s deployment
management provides a staging-to-deploy pipeline, profile-based releases for different regions, and supports incremen-
tal rollout and distribution for different regions.

1.1.2 Android Mobile App Runner and Web App Engine

Applications developed in the end user programming (EUP) content builder are deployed to users and then executed
within the CommCare application engine, which is built on a shared Java codebase. The application configurations can
be run on both a native Android client and a Spring web client, to allow access for users in the field as well as those
accessing the application from a computer on the web.

1.2 Application Data Layer

1.2.1 Data Management

There are two data models that underpin the CommCare data model:

Form A form is the basic building block of Applications. Forms are represented as XForms (XML Forms) which
contain data, logic and rules. Users interact with forms on the mobile device to capture data and perform logic. This
data is then sent back to CommCare as a form submission which is an XML document containing only the data portion
of the XForm.

Forms may include case blocks which can be used to create, update and close cases.

Case Cases are used to track interactions with objects, often people. Cases provide longitudinal records which can track
the ongoing interactions with a case through form submissions and facilitate the complex sharding and reconciliation
required from synchronizing offline clients.

Each case has a type, such as “patient”, “contact”, “household” which distinguishes it from cases of other types. Cases
may also be structured in a hierarchy using uni-directional relationships between cases.

The full specification for cases can be found here.

1.2.2 Transaction Processing

CommCare provides a transaction processing layer which acts as the first step in the underlying data and storage pipeline.
This layer manages the horizontal workload of the mobile and web applications submitting forms, which are archived
into a chunked object storage, and extracts the transactional ‘case’ logic which is used to facilitate data synchronization
through more live storage in the table based storage layer. The transaction processor then appropriately queues trans-
actions into the real time data pipeline for processing into the reporting databases through the Kakfa Change Feed, or
triggering asynchronous business rules in the Celery queue.

The data processing service is flexible to store any content sent or received via mobile form submissions or SMS
services as long as it adheres to the XForms specification. It also saves all logging and auditing information necessary

4 Chapter 1. CommCare HQ Platform Overview

https://dimagi.github.io/xform-spec/
https://github.com/dimagi/commcare-core/wiki/casexml20

CommCareHQ Documentation, Release 1.0

for data security compliance. The data processing service saves all data at the transactional level so that histories can
be audited and reconstructed if necessary.

1.2.3 Synchronization

The synchronization process allows for case and user data to be kept up-to-date through incremental syncs of informa-
tion from the backend server for offline use cases. To ensure consistency, the backend keeps a shadow record of each
user’s application state hashed to a minimal format, when users submit data or request synchronization, this shadow
record hash is kept up to date to identify issues with what local data is on device.

Syncs request a diff from the server by providing their current hashed state and shadow record token. The server then
establishes what cases have been manipulated outside of the local device’s storage (along with reports or other static
data) which may be relevant to the user, such as a new beneficiary or household registered in their region. After all of
those cases are established, the server produces an XML payload similar to the ones generated by filling out forms on
the local device, which is used to update local device storage with the new data.

1.3 Tenant Management Layer

1.3.1 Project Spaces

Every project has its own site on CommCare HQ. Project spaces can house one, or more than one inter-related appli-
cations. Data is not shared among project spaces.

Content can be centrally managed with a master project space housing a master application that can be replicated in
an unlimited number of additional project spaces. CommCare enables fine grained release management along with
roll-back that can be controlled from each project space. These project spaces can be managed under an Enterprise
Subscription that enables centralized control and administration of the project spaces.

1.3.2 User Management

There are two main user types in CommCare: Project Users and Application Users.

Project Users are meant to view data, edit data, manage exports, integrations, and application content. Project Users can
belong to one or more project spaces and are able to transition between project spaces without needing to login/logout
by simply selecting from a drop-down.

Application Users are expected to primarily use CommCare as an end-user entering data and driving workflows through
an application.

Project Users and Application Users are stored with separate models. These models include all permission and project
space membership information, as well as some metadata about the user such as their email address, phone number, etc.
Additionally, authentication stubs are synchronized in real time to SQL where they are saved as Django Users, allowing
us to use standard Django authentication, as well as Django Digest, a third-party Django package for supporting HTTP
Digest Authentication.

1.3. Tenant Management Layer 5

CommCareHQ Documentation, Release 1.0

1.3.3 Device and Worker Monitoring

Mobile devices which are connected to the CommCare server communicate maintenance and status information through
a lightweight HTTP ‘heartbeat’ layer, which receives up-to-date information from devices like form throughput and ap-
plication health, and can transmit back operational codes for maintenance operations, allowing for remote management
of the application directly outside of a full-fledged MDM.

1.4 Analytics and Usage

There are several standard reports available in CommCare. The set of standard reports available are organized into four
categories: Monitor Workers, Inspect Data, Messaging Reports and Manage Deployments.

Monitor Workers
Includes reports that allow you to view and compare activity and performance of end workers against each other.

Inspect Data
Reports for finding and viewing in detail individual cases and form submissions.

Messaging Reports
Domains that leverage CommCare HQ’s messaging capabilities have an additional reporting section for tracking SMS
messages sent and received through their domain

Manage Deployments
Provides tools for looking at applications deployed to users’ phones and device logging information.

1.4.1 User Defined Reports

In addition to the set of standard reports users may also configure reports based on the data collected by their users.
This reporting framework allows users to define User Configurable Reports (UCR) which store their data in SQL tables.

1.4.2 Mobile Reports

UCRs may also be used to send report data to the mobile devices. This data can then be displayed on the device as a
report or graph.

1.5 Messaging Layer

CommCare Messaging integrates with a SMS gateway purchased and maintained by the client as the processing layer
for SMS messages. This layer manages the pipeline from a Case transaction to matching business logic rules to message
scheduling and validation.

6 Chapter 1. CommCare HQ Platform Overview

CommCareHQ Documentation, Release 1.0

1.5.1 Conditional Scheduled Messages

Every time a case is created, updated, or closed in a form it is placed on the asynchronous processing queue. Asyn-
chronous processors review any relevant business logic rules to review whether the case has become (or is no longer)
eligible for the rule, and schedules a localized message which can contain information relevant to the case, such as an
individual who did not receive a scheduled visit.

1.5.2 Broadcast Messages

Broadcast messaging is used to send ad-hoc messages to users or cases. These messages can either be sent immediately,
or at a later date and time, and can also be configured to send to groups of users in the system.

1.5.3 Gateway Connectivity and Configuration, Logging, and Audit Tracking

All SMS traffic (inbound and outbound) is logged in the CommCare Message Log, which is also available as a report.
In addition to tracking the timestamp, content, and contact the message was associated with, the Message Log also
tracks the SMS backend that was used and the workflow that the SMS was a part of (broadcast message, reminder, or
keyword interaction).

The messaging layer is also used to provide limits and controls on messaging volume, restricting the number of messages
which can be sent in a 24hr period, and restricting the time of day which messages will be sent, to comply with
regulations. These restrictions may apply to both ad-hoc and scheduled messages. Messages are still processed and
queued 24hrs per day, but only submitted when permitted.

1.5.4 Messaging Dashboards

Charts and other kinds of visualizations are useful for getting a general overview of the data in your system. The
dashboards in CommCare display various graphs that depict case, user, and SMS activity over time. These graphs
provide visibility into when new cases and users were created, how many SMS messages are being sent daily, and the
breakdown of what those messages were used for (reminders, broadcasts, etc.).

1.6 Integration

CommCare has robust APIs as well as a MOTECH integration engine that is embedded in CommCare. APIs allow
for direct programmatic access to CommCare. The MOTECH integration engine allows for custom business rules
to be implemented that allow for real-time or batch integration with external systems. This engine does not have an
application or content management environment, and so requires custom engineering to be added to a CommCare
instance.

1.6.1 APIs

CommCare has extensive APIs to get data in and out for bidirectional integration with other systems. This method of
data integration requires familiarity with RESTful HTTP conventions, such as GET and POST and url parameters.

There are APIs both for reading and writing data to CommCare. This can be updated data related to forms or cases in
the system and enable highly-sophisticated integrations with CommCare.

More details on CommCare’s API can be found in the API documentation.

1.6. Integration 7

https://confluence.dimagi.com/display/commcarepublic/CommCare+HQ+APIs

CommCareHQ Documentation, Release 1.0

1.6.2 MOTECH Repeaters

For interoperability with external systems which process transactional data, CommCare has a MOTECH repeater layer,
which manages the pipeline of case and form transactions received and manages the lifecycle of secure outbound
messages to external systems.

This architecture is designed to autonomously support the scale and volume of transactional data up to hundreds of
millions of transactions in a 24hr period.

New transformation code for this subsystem can be authored as Python code modules for each outbound integration.
These modules can independently transform the transactional data for the repeater layer, or rely on other data from the
application layer when needed by integration requirements.

8 Chapter 1. CommCare HQ Platform Overview

CHAPTER

TWO

COMMCARE ARCHITECTURE OVERVIEW

2.1 CommCare Backend Services

The majority of the code runs inside the server process. This contains all of the data models and services that power
the CommCare website.

Each module is a collection of one or more Django applications that each contain the relevant data models, url mappings
and view controllers, templates, and Database views necessary to provide that module’s functionality.

2.2 Data flow for forms and cases

CommCare deals with many different types of data but the primary data that is generated by users form and case data.
This data most often comes from a mobile device running the CommCare mobile application. It may also come from
Web Apps, via an integration API or from a case import.

The data processing for form and case data is split into two portions, synchronous processing and asynchronous pro-
cessing.

2.2.1 Synchronous processing

Form and case data in CommCare always follows the same pathway through the system regardless of whether the data
originated from a mobile device (as in the diagram below), from Web Apps, an external integration or from an internal
process such as case update rules.

In all instances a form (which may contain zero or more case changes) is received by CommCare and processed syn-
chronously and atomically to the point of persisting it in the primary databases and recording the change in the change
log.

The diagram below shows this synchronous processing:

9

CommCareHQ Documentation, Release 1.0

1. A form is created on a mobile device (this could also be Web Apps, an external system).

2. The form is received by CommCare and once the request has been authenticated and authorized it is fully pro-
cessed before responding with a success or error response.

3. The data is persisted to the various backend data sources.

1. This SQL database is used for authentication and authorization.

2. A set of partitioned SQL databases form the primary data store for form and case data.

3. Once processing is complete a metadata record is published to the change log for each data model that was created
or updated.

4. The raw form XML is persisted to object storage (only metadata about the form is saved to the primary database
in (b).

5. If this submission is from a mobile device the sync record for the device is updated to allow efficient synchro-
nization when the mobile device next makes a sync request.

4. A successful response is sent to the sender.

2.2.2 Asynchronous data pipeline

Separately from the synchronous workflow described above there is a data processing pipeline which runs asyn-
chronously. This pipeline is responsible for populating the secondary databases which are used for reporting and
as the datasource for some of the APIs that CommCare offers.

10 Chapter 2. CommCare Architecture Overview

CommCareHQ Documentation, Release 1.0

1. Kafka stores the metadata about data model changes. Kafka partitions the data based on the data model ID
(case ID / form ID) and stores each partition separately. Data is sent to Kafka during the synchronous request
processing as described above.

2. A pool of ETL workers (a.k.a. pillows) subscribe to Kafka and receive the metadata records from the partitions
they are subscribed to.

a. Each ETL worker subscribes to a unique set of partitions.

b. Since each worker is independent of the others the rate of processing can vary between workers or can get delayed
due to errors or other external factors.

c. The impact of this is that data liveness in the secondary database may vary based on the specific components
in the pipeline. I.e. two cases which got updated in the same form may be updated in Elasticsearch at different
times due to variations in the processing delay between pillow workers.

3. The ETL workers fetch the data record from the primary database.

a. For forms and cases this data comes from PostgreSQL

b. For users and applications this data comes from CouchDB

4. If the data model is a form then the form XML is also retrieved from object storage. This data together with the
record from the primary database are used to produce the final output which is written to the secondary databases.

a. In the case of UCRs there may be other data that is fetched during the processing stage e.g. locations, users.

2.3 Change Processors (Pillows)

Change processors (known in the codebase as pillows) are events that trigger when changes are introduced to the
database. CommCare has a suite of tools that listen for new database changes and do additional processing based on
those changes. These include the analytics engines, as well as secondary search indices and custom report utilities.
All change processors run in independent threads in a separate process from the server process, and are powered by
Apache Kafka.

2.3. Change Processors (Pillows) 11

https://kafka.apache.org/

CommCareHQ Documentation, Release 1.0

2.4 Task Queue

The task queue is used for asynchronous work and periodic tasks. Processes that require a long time and significant
computational resources to run are put into the task queue for asynchronous processing. These include data exports,
bulk edit operations, and email services. In addition the task queue is used to provide periodic or scheduled functional-
ity, including SMS reminders, scheduled reports, and data forwarding services. The task queue is powered by Celery,
an open-source, distributed task queueing framework.

2.5 Data Storage Layer

CommCare HQ leverages the following databases for its persistence layer.

2.5.1 PostgreSQL

A large portion of our data is stored in the PostgreSQL database, including case data, form metadata, and user account
information.

Also stored in a relational database, are tables of domain-specific transactional reporting data. For a particular reporting
need, our User Configurable Reporting framework (UCR) stores a table where each row contains the relevant indicators
as well as any values necessary for filtering.

For larger deployments the PostgreSQL database is sharded. Our primary data is sharded using a library called PL/Proxy
as well as application logic written in the Python.

PostgreSQL is a powerful, open source object-relational database system. It has more than 15 years of active develop-
ment and a proven architecture that has earned it a strong reputation for reliability, data integrity, and correctness.

See Configuring SQL Databases in CommCare

2.5.2 CouchDB

CommCare uses CouchDB as the primary data store for some of its data models, including the application builder
metadata and models around multitenancy like domains and user permissions. CouchDB is an open source database
designed to be used in web applications. In legacy systems CouchDB was also used to store forms, cases, and SMS
records, though these models have moved to PostgreSQL in recent applications.

CouchDB was primarily chosen because it is completely schema-less. All data is stored as JSON documents and views
are written to index into the documents to provide fast map-reduce-style querying.

In addition CommCare leverages the CouchDB changes feed heavily to do asynchronous and post processing of our
data. This is outlined more fully in the “change processors” section above.

2.5.3 Elasticsearch

Elasticsearch is a flexible and powerful open source, distributed real-time search and analytics engine for the cloud.
CommCare uses Elasticsearch for several distinct purposes:

Much of CommCare’s data is defined by users in the application configuration. In order to provide performant reporting
and querying of user data CommCare makes use of Elasticsearch.

CommCare also serves portions of the REST API from a read-only copy of form and case data that is replicated in real
time to an Elasticsearch service.

This also allows independent scaling of the transactional data services and the reporting services.

12 Chapter 2. CommCare Architecture Overview

https://docs.celeryproject.org
https://www.postgresql.org
https://couchdb.apache.org/
https://www.elastic.co/

CommCareHQ Documentation, Release 1.0

2.6 Devops Automation

2.6.1 Fabric / Ansible

Fabric and Ansible are deployment automation tools which support the efficient management of cloud resources for
operations like deploying new code, rolling out new server hosts, or running maintenance processes like logically
resharding distributed database. CommCare uses these tools as the foundation for our cloud management toolkit,
which allows us to have predictable and consistent maintenance across a large datacenter.

Dimagi’s tool suite, commcare-cloud is also available on Github

2.7 Other services

2.7.1 Nginx (proxy)

CommCare’s main entry point for all traffic to CommCare HQ goes through Nginx. Nginx performs the following
functions:

• SSL termination

• Reverse proxy and load balancing

• Request routing to CommCare and Formplayer

• Serving static assets

• Request caching

• Rate limiting (optional)

2.7.2 Redis

Redis is an open source document store that is used for caching in CommCare HQ. Its primary use is for general caching
of data that otherwise would require a query to the database to speed up the performance of the site. Redis also is used
as a temporary data storage of large binary files for caching export files, image dumps, and other large downloads.

2.7.3 Apache Kafka

Kafka is a distributed streaming platform used for building real-time data pipelines and streaming apps. It is horizontally
scalable, fault-tolerant, fast, and runs in production in thousands of companies. It is used in CommCare to create
asynchronous feeds that power our change processors (pillows) as part of the reporting pipeline.

2.7.4 RabbitMQ

RabbitMQ is an open source Advanced Message Queuing Protocol (AMQP) compliant server. As mentioned above
CommCare uses the Celery framework to execute background tasks. The Celery task queues are managed by Rab-
bitMQ.

2.6. Devops Automation 13

https://dimagi.github.io/commcare-cloud/
https://www.nginx.com/
https://redis.io/
https://kafka.apache.org/
https://www.rabbitmq.com/
https://docs.celeryproject.org

CommCareHQ Documentation, Release 1.0

2.7.5 Gunicorn

Gunicorn is an out-of-the-box multithreaded HTTP server for Python, including good integration with Django. It allows
CommCare to run a number of worker processes on each worker machine with very little additional setup. CommCare
is also using a configuration option that allows each worker process to handle multiple requests at a time using the
popular event-based concurrency library Gevent. On each worker machine, Gunicorn abstracts the concurrency and
exposes our Django application on a single port. After deciding upon a machine through its load balancer, our proxy
is then able to forward traffic to this machine’s port as if forwarding to a naive single-threaded implementation such as
Django’s built-in “runserver”.

14 Chapter 2. CommCare Architecture Overview

https://gunicorn.org/

CHAPTER

THREE

COMMCARE ENHANCEMENT PROPOSAL PROCESS

This process outlines a mechanism for proposing changes to CommCare HQ. The process is intentionally very
lightweight and is not intended as a gateway that must be passed through. The main goal of the process is to com-
municate intended changes or additions to CommCare HQ and facilitate discussion around those changes.

The CommCare Enhancement Proposal (CEP) process is somewhat analogous to the Request For Comments process
though much simpler:

1. Create a CEP

Create a Github Issue using the CEP template. Once you have completed the template submit the
issue an notify relevant team members or @dimagi/dimagi-dev.

2. Respond to any questions or comments that arise

15

https://en.wikipedia.org/wiki/Request_for_Comments
https://github.com/dimagi/commcare-hq/issues/new/choose

CommCareHQ Documentation, Release 1.0

16 Chapter 3. CommCare Enhancement Proposal Process

CHAPTER

FOUR

APPLICATION TERMINOLOGY

4.1 Applications (and builds)

An application typically has many different Application documents: one for the current/primary/canonical applica-
tion, plus one for each saved build. The current app’s id is what you’ll see in the URL on most app manager pages.
Most pages will redirect to the current app if given the id of an older build, since saved builds are essentially read-only.

In saved builds, copy_of contains the primary app’s id, while it’s None for the primary app itself. If you need to be
flexible about finding primary app’s id on an object that might be either an app or a build, use the property origin_id.

Within code, “build” should always refer to a saved build, but “app” is used for both the current app and saved builds.
The ambiguity of “app” is occasionally a source of bugs.

Every time an app is saved, the primary doc’s version is incremented. Builds have the version from which they
were created, which is never updated, even when a build doc is saved (e.g., the build is released or its build comment
is updated).

When a user makes a build of an application, a copy of the primary application document is made. These documents are
the “versions” you see on the deploy page. Each build document will have a different id, and the copy_of field will be
set to the ID of the primary application document. Both builds and primary docs contain built_on and built_with
information - for a primary app doc, these fields will match those of the most recent build. Additionally, a build creates
attachments such as profile.xml and suite.xml and saves then to the build doc (see create_all_files).

When a build is released, its is_released attribute will be set to True. is_released is always false for primary
application docs.

4.2 Modules

An application contains one or more modules, which are called “menus” in user-facing text. These modules roughly
map to menus when using the app on a device. In apps that use case management, each module is associated with a
case type.

Each module has a unique_id which is guaranteed unique only within the application.

17

CommCareHQ Documentation, Release 1.0

4.3 Forms

A “form” in HQ may refer to either a form definition within an application or a form submission containing data. App
manager code typically deals with form definitions.

A module contains one or more form definitions. Forms, at their most basic, are collections of questions. Forms also
trigger case changes and can be configured in a variety of ways.

Each form has a unique_idwhich is guaranteed unique only within the domain. For the most part, being unique within
an application is sufficient, but uniqueness across the domain is required for the sake of multimaster linked applications.
See this commit for detail.

Forms also have an xml namespace, abbreviated xmlns, which is part of the form’s XML definition. Reports match
form submissions to form definitions using the xmlns plus the app id, which most apps pass along to secure_post. For
reports to identify forms accurately, xmlns must be unique within an app.

Duplicate xmlnses in an app will throw an error when a new version of the app is built. When an app is copied, each
form in the copy keeps the same XMLNS as the corresponding form in the original. When a form is copied within an
app - or when a user uploads XML using an xmlns already in use by another form in the same app - the new form’s
xmlns will be set to a new value in save_xform.

4.3.1 Exceptions

Linked apps use similar workflows to app copy for creating and pulling. See docs for more detail on how they handle
form unique ids and xmlnses.

Shadow forms are a variation of advanced forms that “shadow” another form’s XML but can have their own settings
and actions. Because they don’t have their own XML, shadow forms do not have an xmlns but instead inherit their
source form’s xmlns. In reports, submissions from shadow forms show up as coming from their source form.

18 Chapter 4. Application terminology

https://github.com/dimagi/commcare-hq/commit/6e2f38653377d167fdbef247f02eaec4159ce2e2#diff-535390eb5c83a4cd3449f82afd1fa9fb
https://github.com/dimagi/commcare-hq/blob/5d9122ad2ba23986e6b4493eee0eab16cbcc868b/corehq/apps/receiverwrapper/views.py#L304
https://github.com/dimagi/commcare-hq/blob/170690a2fbf8039365fdca852911b4a57fd70a1e/corehq/apps/app_manager/util.py#L171
https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/linked_domain#linked-applications

CHAPTER

FIVE

FEATURES

5.1 Template apps

HQ currently has two versions of “template apps.”

5.1.1 Onboarding apps

The first set of template apps are simple apps in different sectors that we’ve experimented with adding to a user’s project
when they first sign up for an account. These template apps are stored as json in the code base, in the template_apps
directory. They are imported using the view app_from_template.

5.1.2 COVID app library

This is a set of template applications that exist in a real project space and are made publicly visible to other domains.
A record of each app is stored as an ExchangeApplication model.

These applications are visible via the app_exchange view.

To add a new app, add a new ExchangeApplication model via django admin. You must supply a domain and an app
id. Use the “canonical” app id used in app manager URLs, not a specific build id. You may also provide a help link
and/or a link to a version history. All released versions of the app will be available via the app library, with the versions
labeled by date of release, not by version number. The application title displayed in the library will be from the latest
version of the app.

19

https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/app_manager/static/app_manager/template_apps

CommCareHQ Documentation, Release 1.0

20 Chapter 5. Features

CHAPTER

SIX

BULK APPLICATION TRANSLATIONS

HQ supports a file download and re-upload to update all application-specific translations.

The download has two variants, a multi-sheet and a single-sheet format. Both are tolerant of partial uploads:

missing sheets, missing language columns (as opposed to the columns needed to identify a row), and missing rows

(with some exceptions for module translations, which depend on case properties being present and correctly ordered).

The default multi-sheet format contains a first “menus and forms” sheet for editing module and form names and menu
media. It then contains a sheet for each module and each form.

The single-sheet format allows editing all of the same content, just with all rows in the same sheet. Depending on the
type of row (module/form name, module content, or form content) certain columns will be blank.

The UI defaults to the multi-sheet download. There’s a feature flagged ability to select a single language, which down-
loads the single sheet format for that language. There’s no technical reason that the single sheet download is also a
single language download.

For domains with Transifex integration, Transifex generates Excel files in the multi-sheet format that HQ accepts.

Code is organized into - download.py Generation of Excel downloads - upload_app.py Entry point to upload code -
upload_module.py Helper functions to update module content - upload_form.py Helper functions to update form
content - utils.py Helper functions shared by download and upload, such as header generators

21

CommCareHQ Documentation, Release 1.0

22 Chapter 6. Bulk Application Translations

CHAPTER

SEVEN

MULTIMEDIA

7.1 General multimedia handling

Multimedia metadata is stored in couch, using CommCareMultimedia and its subclasses: CommCareImage,
CommCareAudio, etc.

Each file is stored once, regardless of how many applications or domains use it. This is enforced via the by_hash view,
which stores a hash of each multimedia file’s content. When new multimedia is uploaded, the contents are hashed and
looked up to determine wheether or not to create a new document. See CommCareMultimedia.get_by_data and its
calling code in places like BaseProcessFileUploadView.process_upload.

These documents are never deleted.

7.2 Multimedia in applications

7.2.1 The app’s multimedia_map

The biggest use case for multimedia in CommCare is displaying multimedia in applications. The application’s
multimedia_map property stores information about where it uses multimedia.

multimedia_map is a dict where each key is a path and each value is a dict corresponding to an HQMediaMapItem.
The map has one entry for every path, also called a reference, in the application. If an application uses the same image
as an icon for two forms, it will have two entries in the map, unless a user has edited the app so that both forms use the
same path.

Sample multimedia_map entry:

"jr://file/commcare/image/module0_en.jpg": {
"doc_type": "HQMediaMapItem",
"media_type": "CommCareImage",
"multimedia_id": "7f14f2dc29fa7c406dc1b0d40603e742",
"unique_id": "b6ee70e5e61ea550b26d36cc185dde23",
"version": 17

}

The path is auto-generated by HQ based on where the file is being used. It can be manually edited - everywhere that a
multimedia file can be uploaded, its path can be edited. There is also a tool to edit multimedia paths in bulk via Excel.

The doc_type is always HQMediaMapItem.

The media_type is CommCareMultimedia or one of its subclasses.

The multimedia_id is the id of the corresponding CommCareMultimedia document.

23

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/hqmedia/_design/views/by_hash/map.js

CommCareHQ Documentation, Release 1.0

The unique_id is a hash of the concatenated multimedia id and path at the time the item was created. That means this
id will be unique within the multimedia map, but will not be globally unique.

The version is the app version where the multimedia was added or most recently changed. The version can be None
for applications that are unbuilt, and then any blank versions will be assigned when a new build is made. More on this
below.

Versioning multimedia

CommCare (on mobile) uses the version to determine when to re-download an updated multimedia file. The version
will always be an app version. This correspondence isn’t necessary; all the phone checks is if the current version is
greater than the version already on the phone - if so, the phone will re-download the multimedia. This logic is based
on the logic used to download updated forms.

The version is updated (set to the latest app version) in the following situations:

• Multimedia is added to the app.

• The content of multimedia is changed, by using the “Replace” button in the uploader. This also causes the
multimedia id to change. It typically does not change the unique*id, because set*media*versions looks up the
path in the previous version of the app and uses that item’s unique id. However, it may change the unique*id
for form question media, because form questions include a random string at the end of their path which changes
when a user uploads a new file.

• The path alone is changed using the “Manage Multimedia Paths” bulk uploader. This does not change the unique
id, even though the path changes.

• The path and content are changed together in the UI. This also replaces the multimedia id and re-generates the
unique id.

Linked apps

Linked apps, when pulled, copy the multimedia map directly from the upstream app, so all the attributes of each item
will match those in the upstream app. Because linked apps are always pulled from a released version of an upstream
app, each item should have a version set.

7.2.2 media_suite.xml

The media suite contains a list of media elements, one for each value in the multimedia map.

<media path="../../commcare/image">
<resource descriptor="Image File: FILENAME" id="media-UNIQUE_ID-FILENAME" version=

→˓"VERSION">
<location authority="local">PATH</location>
<location authority="remote">

URL
</location>

</resource>
</media>

• FILENAME is originally generated by HQ and will be fairly readable, something like module0_en.jpg, and
may be modified by users.

• PATH will be the path to the file on the device, so similar to the path used as a key in the multimedia map, though in
a format like ./commcare/image/module0*en.jpg rather than the jr://commcare/image/module0*en.
jpg format used in the map.

24 Chapter 7. Multimedia

CommCareHQ Documentation, Release 1.0

• UNIQUE_ID and VERSION are from the multimedia map.

• URL is the url to access the file on the server and incorporates the media type, multimedia
id, and filename, e.g., http://www.commcarehq.org/hq/multimedia/file/CommCareImage/
7f14f2dc29fa7c406dc1b0d40603e742/module0_en.jpg.

If the same file is uploaded to two different paths, it will be included twice on the device, but on the server it will be
stored only once and will have only one CommCareMultimedia document. Although there will be two different URLs
in the media suite, they will point to the same page: HQ only uses the multimedia id to identify the file, it ignores the
URL’s filename suffix.

7.2. Multimedia in applications 25

CommCareHQ Documentation, Release 1.0

26 Chapter 7. Multimedia

CHAPTER

EIGHT

ADDING A NEW COMMCARE SETTING

A new setting can be defined in commcare-app-settings.yml or commcare-profile-settings.yml depending on whether
the setting is HQ only or should also go to mobile xml files. The spec for setting is given in below section.

27

CommCareHQ Documentation, Release 1.0

28 Chapter 8. Adding a new CommCare Setting

CHAPTER

NINE

COMMCARE SETTINGS CONFIG SPEC

This page documents the YAML configuration found in these locations:

• commcare-app-settings.yml: Settings that are specific to CommCare HQ’s configurations

• commcare-profile-settings.yml: Settings that are 1-to-1 with CommCare mobile profile features/properties

• commcare-settings-layout.yml: Determines how these settings are grouped and laid out on the app settings page

Each of commcare-app-settings.yml and commcare-profile-settings.yml contain a yaml list with each ele-
ment containing the following properties:

9.1 Required properties

• id - The “key” attribute to be used in the CommCare profile (or “feature” name)

• name - Human readable name of the property

• description - A longer human readable description of what the property does

• default - The default value for the property

• values - All the possible values for the property

• value_names - The human readable names corresponding to the values

9.2 Optional

• requires - Should be set if this property is only enabled when another property has a certain value. Syntax is
"{SCOPE.PROPERTY}='VALUE'", where SCOPE can be hq, properties, features, or $parent.

• requires_txt - Optional text explaining the dependency enforced by requires

• contingent_default - What value to force this property to if it’s disabled. E.g. [{"condition":
"{features.sense}='true'", "value": "cc-su-auto"}], means “if the feature sense is 'true', then
this property should be forced to take the value "cc-su-auto".

• since - The CommCare version in which this property was introduced. E.g. 2.1.

• type - Less common. To render as a “feature” set this to "features".

• commcare_default - The default used by CommCare, if it differs from the default we want it to have on HQ.

• disabled_default - The default to be used if the app’s build version is less than the since parameter.
contingent_default takes precedence over this setting.

• values_txt - Extra help text describing what values can be entered

29

https://github.com/dimagi/core-hq/blob/master/corehq/apps/app_manager/static/app_manager/json/commcare-app-settings.yml
https://github.com/dimagi/core-hq/blob/master/corehq/apps/app_manager/static/app_manager/json/commcare-profile-settings.yml
https://github.com/dimagi/core-hq/blob/master/corehq/apps/app_manager/static/app_manager/json/commcare-settings-layout.yml

CommCareHQ Documentation, Release 1.0

• group - Presentational; defines how the properties get grouped on HQ

• disabled - Set to true for deprecated values we don’t want to show up in the UI anymore

• force - Set to true to have the force attribute of the setting set when building the profile. Only applies when
type=’properties’ (default).

• toggle - If specified, the property will only be shown if the given toggle is enabled. The value should be an
identifier for a toggle in corehq/toggles.py, e.g. “CUSTOM_APP_BASE_URL”

• warning - Text displayed if the value of the setting is invalid

Only static setting options can be defined in settings yaml files, any app or domain specific context to ren-
der the setting on HQ Edit Application settings page can be provided in corehq.apps.app_manager.view.
apps:get_app_view_context

9.3 Example

- name: "Auto Update Frequency"
description: "How often CommCare mobile should attempt to check for a new, released␣

→˓application version."
id: "cc-autoup-freq"
values: ["freq-never", "freq-daily", "freq-weekly"]
value_names: ["Never", "Daily", "Weekly"]
default: "freq-never"
values_txt: "After login, the application will look at the profile's defined reference␣

→˓for the authoritative location of the newest version. This check will occur with some␣
→˓periodicity since the last successful check based on this property. freq-never␣
→˓disables the automatic check."
since: "1.3"

30 Chapter 9. CommCare Settings Config Spec

CHAPTER

TEN

APP NAVIGATION FEATURES

Navigation in CommCare is oriented around form entry. The goal of each CommCare session is to complete a form.
Menus and case lists are tools for gathering the necessary data required to enter a particular form. App manager gives
app builders direct control over many parts of their app’s UI, but the exact sequence of screens a user sees is indirectly
configured.

Based on app configuration, HQ builds a suite.xml file that acts as a blueprint for the app. It outlines what forms
are available to fill out, where they fit, and what data (like cases) they will need to function. CommCare interprets this
configuration to decide which screens to show to the user and in what order.

Much of the complexity of app manager code, and of building apps, comes from inferences HQ makes while building
the suite file, especially around determining the set of data required for each form. These features that influence, but
don’t directly control, the suite also influence each other, in ways that may not be obvious. The following features are
particularly prone to interact unexpectedly and should be tested together when any significant change is made to any
of them:

1. Display Only Forms

2. Select Parent First

3. End of Form Navigation and Form Linking

4. Child Modules

5. Shadow Modules

Several of these features are simple from an app builder’s perspective, but they require HQ to “translate” UI concepts
into suite concepts. Other features force the app builder to understand suite concepts, so they may be challenging for
app builders to learn but are less prone to interacting poorly with other features:

1. Case search, which maps fairly cleanly to the <remote-request> element (except when using the
USH_INLINE_SEARCH flag).

2. Advanced modules

10.1 Display Only Forms

Display only forms is deceptively simple. This setting causes a module’s forms to be displayed directly in the parent
menu (either the parent module’s menu or the root CommCare menu), instead of the user needing to explicitly select
the menu’s name. This can be a UX efficiency gain.

However, quite a lot of suite generation is structured around modules, and using display only forms means that modules
no longer map cleanly to <menu> elements. This means that modules using display only forms can’t be “destinations”
in their own right, so they don’t work with end of form navigation, form linking, or smart links. It also complicates
menu construction, raising issues like how to deal with module display conditions when the module doesn’t have a
dedicated <menu>.

31

CommCareHQ Documentation, Release 1.0

10.2 Select Parent First

When the “select parent first” setting is turned on for a module, the user is presented with a case list for the parent case
type. The user selects a case from this list and is then given another case list limited to children of that parent. The user
can select any other module in the app that uses the parent case type to use as the configuration for this parent case list.

This setting is controlled by ModuleBase.parent_select and has a dedicated model, ParentSelect. The suite
implementation is small: HQ adds a parent_id datum to the module’s <entry> blocks and a filter to the main
case_id datum’s nodeset to filter it to children of the parent: [index/parent=instance('commcaresession')/
session/data/parent_id].

This is easy to confuse with parent/child modules (see below), which affect the suite’s <menu> elements and can affect
datum generation.

The feature flag NON_PARENT_MENU_SELECTION allows the user to use any module as the “parent” selection, and it
does not use the additional nodeset filter. This allows for more generic two-case-list workflows.

10.3 End of Form Navigation and Form Linking

These features allow the user to select a destination for the user to be automatically navigated to after filling out a
particular form. To support this, HQ needs to figure out how to get to the requested destination, both the actions taken
(user selecting a form or menu) and the data needed (which needs to be pulled from somewhere, typically the session,
in order to automatically navigate the user instead of asking them to provide it).

End of form navigation (“EOF nav”) allows for a couple of specific locations, such as going back to the form’s module
or its parent module. EOF nav also has a “previous screen” option this is particularly fragile, since it requires HQ to
replicate CommCare’s UI logic.

Form linking, which is behind the FORM_LINK_WORKFLOW flag, allows the user to select a form as the destination. Form
linking allows the user to link to multiple forms, depending on the value of an XPath expression.

Most forms can be linked “automatically”, meaning that it’s easy for HQ to determine what datums are needed. See the
auto_link logic for implementation. For other forms, HQ pushes the burden of figuring out datums towards the user,
requiring them to provide an XPath expression for each datum.

EOF nav and form linking config is stored in FormBase.post_form_workflow. In the suite, it’s implemented as a
stack in the form’s <entry> block. For details, see docs on WorkflowHelper.

10.4 Child Modules

In principle child modules is very simple. Making one module a child of another simply changes the menu elements
in the suite.xml file. For example in the XML below module m1 is a child of module m0 and so it has its root attribute
set to the ID of its parent.

<menu id="m0">
<text>

<locale id="modules.m0"/>
</text>
<command id="m0-f0"/>

</menu>
<menu id="m1" root="m0">

<text>
<locale id="modules.m1"/>

(continues on next page)

32 Chapter 10. App Navigation Features

https://github.com/dimagi/commcare-hq/blob/b7c88d4127feeb0ebc17c7df3211fb523a900f6f/corehq/apps/app_manager/views/forms.py#L919-L950
https://github.com/dimagi/commcare-core/wiki/SessionStack

CommCareHQ Documentation, Release 1.0

(continued from previous page)

</text>
<command id="m1-f0"/>

</menu>

HQ’s app manager only allows users to configure one level of nesting; that is, it does not allow for “grandchild” modules.
Although CommCare mobile supports multiple levels of nesting, beyond two levels it quickly gets prohibitively complex
for the user to understand the implications of their app design and for for HQ to determine a logical set of session
variables for every case. The modules could have all different case types, all the same, or a mix, and for modules that
use the same case type, that case type may have a different meanings (e.g., a “person” case type that is sometimes a
mother and sometimes a child), which all makes it difficult for HQ to determine the user’s intended application design.
See below for more on how session variables are generated with child modules.

10.4.1 Menu structure

As described above the basic menu structure is quite simple however there is one property in particular that affects the
menu structure: module.put_in_root

This property determines whether the forms in a module should be shown under the module’s own menu item or under
the parent menu item:

put_in_root Resulting menu
True id=”<parent menu id>”
False id=”<module menu id>” root=”<parent menu id>”

Notes:
• If the module has no parent then the parent is root.

• root=”root” is equivalent to excluding the root attribute altogether.

10.4.2 Session Variables

This is all good and well until we take into account the way the Session works on the mobile which “prioritizes the
most relevant piece of information to be determined by the user at any given time”.

This means that if all the forms in a module require the same case (actually just the same session IDs) then the user will
be asked to select the case before selecting the form. This is why when you build a module where all forms require a
case the case selection happens before the form selection.

From here on we will assume that all forms in a module have the same case management and hence require the same
session variables.

When we add a child module into the mix we need to make sure that the session variables for the child module forms
match those of the parent in two ways, matching session variable names and adding in any missing variables. HQ will
also update the references in expressions to match the changes in variable names. See corehq.apps.app_manager.
suite_xml.sections.entries.EntriesHelper.add_parent_datums for implementation.

10.4. Child Modules 33

https://github.com/dimagi/commcare-hq/blob/765bb4030d0923a4ae887aabecf688e72045dd7b/corehq/apps/app_manager/suite_xml/sections/entries.py#L366
https://github.com/dimagi/commcare-hq/blob/765bb4030d0923a4ae887aabecf688e72045dd7b/corehq/apps/app_manager/suite_xml/sections/entries.py#L366
https://github.com/dimagi/commcare/wiki/Suite20#the-session

CommCareHQ Documentation, Release 1.0

Matching session variable names

For example, consider the session variables for these two modules:

module A:

case_id: load mother case

module B child of module A:

case_id_mother: load mother case
case_id_child: load child case

You can see that they are both loading a mother case but are using different session variable names.

To fix this we need to adjust the variable name in the child module forms otherwise the user will be asked to select the
mother case again:

case_id_mother -> case_id

module B final:

case_id: load mother case
case_id_child: load child case

Note: If you have a case_id in both module A and module B, and you wish to access the ID of the case selected in
parent module within an expression like the case list filter, then you should use parent_id instead of case_id

Inserting missing variables

In this case imagine our two modules look like this:

module A:

case_id: load patient case
case_id_new_visit: id for new visit case (uuid())

module B child of module A:

case_id: load patient case
case_id_child: load child case

Here we can see that both modules load the patient case and that the session IDs match so we don’t have to change
anything there.

The problem here is that forms in the parent module also add a case_id_new_visit variable to the session which the
child module forms do not. So we need to add it in:

module B final:

case_id: load patient case
case_id_new_visit: id for new visit case (uuid())
case_id_child: load child case

Note that we can only do this for session variables that are automatically computed and hence does not require user
input.

34 Chapter 10. App Navigation Features

CommCareHQ Documentation, Release 1.0

10.5 Shadow Modules

A shadow module is a module that piggybacks on another module’s commands (the “source” module). The shadow
module has its own name, case list configuration, and case detail configuration, but it uses the same forms as its source
module.

This is primarily for clinical workflows, where the case detail is a list of patients and the clinic wishes to be able to
view differently-filtered queues of patients that ultimately use the same set of forms.

Shadow modules are behind the feature flag Shadow Modules.

10.5.1 Scope

The shadow module has its own independent:

• Name

• Menu mode (display module & forms, or forms only)

• Media (icon, audio)

• Case list configuration (including sorting and filtering)

• Case detail configuration

The shadow module inherits from its source:

• case type

• commands (which forms the module leads to)

• end of form behavior

10.5.2 Limitations

A shadow module can neither be a parent module nor have a parent module

A shadow module’s source can be a parent module. The shadow will automatically create a shadow version of any
child modules as required.

A shadow module’s source can have a parent module. The shadow will appear as a child of that same parent.

Shadow modules are designed to be used with case modules. They may behave unpredictably if given an advanced
module or reporting module as a source.

Shadow modules do not necessarily behave well when the source module uses custom case tiles. If you experience
problems, make the shadow module’s case tile configuration exactly matches the source module’s.

10.5.3 Entries

A shadow module duplicates all of its parent’s entries. In the example below, m1 is a shadow of m0, which has one
form. This results in two unique entries, one for each module, which share several properties.

<entry>
<form>

http://openrosa.org/formdesigner/86A707AF-3A76-4B36-95AD-FF1EBFDD58D8
</form>
<command id="m0-f0">

(continues on next page)

10.5. Shadow Modules 35

CommCareHQ Documentation, Release 1.0

(continued from previous page)

<text>
<locale id="forms.m0f0"/>

</text>
</command>

</entry>
<entry>

<form>
http://openrosa.org/formdesigner/86A707AF-3A76-4B36-95AD-FF1EBFDD58D8

</form>
<command id="m1-f0">

<text>
<locale id="forms.m0f0"/>

</text>
</command>

</entry>

10.5.4 Menu structure

In the simplest case, shadow module menus look exactly like other module menus. In the example below, m1 is a
shadow of m0. The two modules have their own, unique menu elements.

<menu id="m0">
<text>

<locale id="modules.m0"/>
</text>
<command id="m0-f0"/>

</menu>
<menu id="m1">

<text>
<locale id="modules.m1"/>
</text>

<command id="m1-f0"/>
</menu>

Menus get more complex when shadow modules are mixed with parent/child modules. In the following example, m0 is
a basic module, m1 is a child of m0, and m2 is a shadow of m0. All three modules have put_in_root=false (see Child
Modules > Menu structure above). The shadow module has its own menu and also a copy of the child module’s menu.
This copy of the child module’s menu is given the id m1.m2 to distinguish it from m1, the original child module menu.

<menu id="m0">
<text>

<locale id="modules.m0"/>
</text>
<command id="m0-f0"/>

</menu>
<menu root="m0" id="m1">

<text>
<locale id="modules.m1"/>

</text>
<command id="m1-f0"/>

</menu>
(continues on next page)

36 Chapter 10. App Navigation Features

CommCareHQ Documentation, Release 1.0

(continued from previous page)

<menu root="m2" id="m1.m2"> ␣
→˓ <text>

<locale id="modules.m1"/>
</text> ␣

→˓ <command id="m1-f0"/>
</menu>
<menu id="m2"> ␣
→˓ <text>

<locale id="modules.m2"/>
</text> ␣

→˓ <command id="m2-f0"/>
</menu>

10.5.5 Legacy Child Shadow Behaviour

Prior to August 2020 shadow modules whose source was a parent had inconsistent behaviour.

The child-shadows were not treated in the same manner as other shadows - they inherited everything from their source,
which meant they could never have their own case list filter, and were not shown in the UI. This was confusing. A side-
effect of this was that display-only forms were not correctly interpreted by the phone. The ordering of child shadow
modules also used to be somewhat arbitrary, and so some app builders had to find workarounds to get the ordering they
wanted. Now in V2, what you see is what you get.

Legacy (V1) style shadow modules that have children can be updated to the new behaviour by clicking “Upgrade” on
the settings page. This will create any real new shadow-children, as required. This will potentially rename the identifier
for all subsequent modules (i.e. m3 might become m4 if a child module is added above it), which could lead to issues
if you have very custom XML references to these modules anywhere. It might also change the ordering of your child
shadow modules since prior to V2, ordering was inconsistent. All of these things should be easily testable once you
upgrade. You can undo this action by reverting to a previous build.

If the old behaviour is desired for any reason, there is a feature flag “V1 Shadow Modules” that allows you to make
old-style modules.

10.5. Shadow Modules 37

CommCareHQ Documentation, Release 1.0

38 Chapter 10. App Navigation Features

CHAPTER

ELEVEN

THE SUITE

An application’s suite.xml file controls its structure.

The full XML spec for the suite is availabe on the commcare-core wiki.

11.1 Overview

Suite generation starts with Application.create_suite, which delegates to SuiteGenerator.

Suite generation is organized based on its major XML elements: resources, entries, details, etc. The suite is generated
in two passes:

1. corehq.apps.app_manager.suite_xml.sections generates independendent parts. A “section” is one of
the major elements that goes into the suite: resources, entries, details, etc. This logic relies on the app document
itself.

2. corehq.apps.app_manager.suite_xml.post_process handles logic that depends on the first pass being
complete. Some of this logic adds new elements, some manipulates existing elements. This logic relies on the
app document and also on the XML models generated by the first pass. Anything that deals with stacks must be
a post processor, to guarantee that all menus have already been generated.

Challenges for developers in suite generation code:

• Language mixes CommCare concepts, such as “datum” and “menu”, with HQ concepts, such as “modules”

• Lots of branching

• Has evolved one feature at a time, sometimes without attention to how different features interact

• CommCare’s suite spec supports plenty of behavior that HQ doesn’t allow the app builder to configure. In some
areas, 20% of the HQ logic handles 80% of what’s actually supported, so the code is more complex than the
developer might expect. As an example of this, the suite code generally supports an arbitrary number of datums
per form, even though the vast majority of forms only require one or two cases.

A bright spot: test coverage for suite generation is good, and adding new tests is typically straightforward.

39

https://github.com/dimagi/commcare/wiki/Suite20
https://github.com/dimagi/commcare-core/wiki/Suite20#stack

CommCareHQ Documentation, Release 1.0

11.2 Sections

11.2.1 DetailContributor

Details represent the configuration for case lists and case details. The reuse of the word “Detail” here is unfortunate.
Details can be used for other purposes, such as the referral_detail, but 99% of the time they’re used for case
list/detail.

The case list is the “short” detail and the case detail is the “long” detail. A handful of configurations are only supported
for one of these, e.g., actions only get added to the short detail.

The detail element can be nested. HQ never nests short details, but it nests long details to produce tabbed case details.
Each tab has its own <detail> element.

The bulk of detail configuration is in the display properties, called “fields” and sometimes “columns” in the code. Each
field has a good deal of configuration, and the code transforms them into named tuples while processing them. Each
field has a format, one of about a dozen options. Formats are typically either UI-based, such as formatting a phone
number to display as a link, or calculation-based, such as configuring a property to display differently when it’s “late”,
i.e., is too far past some reference date.

Most fields map to a particular case property, with the exception of calculated properties. These calculated properties
are identified only by number. A typical field might be called case_dob_1 in the suite, indicating both its position and
its case property, but a calculation would be called case_calculated_property_1.

11.2.2 EntriesContributor

This is the largest and most complex of the suite sections, responsible for generating an <entry> element for each
form, including the datums required for form entry. The EntriesHelper, which does all of the heavy lifting here, is
imported into other places in HQ that need to know what datums a form requires, such as the session schema generator
for form builder and the UI for form linking.

When forms work with multiple datums, they need to be named in a way that is predictable for app builders, who
reference them inside forms. This is most relevant to the “select parent first” feature and to parent/child modules. See
update_refs and rename_other_id, both inner functions in add_parent_datums, plus this comment on matching
parent and child datums.

11.2.3 FixtureContributor

This contributor adds a tiny fixture with a demo user group.

It’s also the parent class for SchedulerFixtureContributor, a flagged feature.

11.2.4 MenuContributor

Menus approximately correspond to HQ modules.

Menus almost correspond to command lists, the screens in CommCare that ask the user to select a form or sub-menu.
However, if the suite contains multiple <menu> elements with the same id, they will be concatenated and displayed as
a single screen.

Menu ids will typically map to the module’s position in the application: the first menu is m0, second is m1, etc.

Highlights of menu configuration:

• Display conditions, which become relevant attributes

40 Chapter 11. The Suite

https://github.com/dimagi/commcare-hq/blob/c9fa01d1ccbb73d8f07fefbe56a0bbe1dbe231f8/corehq/apps/app_manager/suite_xml/sections/entries.py#L966-L971

CommCareHQ Documentation, Release 1.0

• Display-only forms, which becomes the put_in_root attribute

• Grid style, to determine whether the command list should be displayed as a flat list or as a grid that emphasizes
the menu icons

11.2.5 Resource Contributors

These contributors let the suite know where to find external resources,. These external resources are text files that are
also part of the application’s CCZ.

• FormResourceContributor handles XForms

• LocaleResourceContributor handles the text files containing translations

• PracticeUserRestoreContributor handles a dummy restore used for Practice Mode

11.3 Post Processors

11.3.1 EndpointsHelper

This is support for session endpoints, which are a flagged feature for mobile that also form the basis of smart links in
web apps.

Endpoints define specific locations in the application using a stack, so they rely on similar logic to end of form naviga-
tion. The complexity of generating endpoints is all delegated to WorkflowHelper.

11.3.2 InstancesHelper

Every instance referenced in an xpath expression needs to be added to the relevant entry or menu node, so that Comm-
Care knows what data to load when. This includes case list calculations, form/menu display conditions, assertions,
etc.

HQ knows about a particular set of instances (locations, reports, etc.). There’s factory-based code dealing with these
“known” instances. When a new feature involves any kind of XPath calculation, it needs to be scanned for instances.

Instances are used to reference data beyond the scope of the current XML document. Examples are the commcare
session, casedb, lookup tables, mobile reports, case search data etc.

Instances are added into the suite file in <entry> or <menu> elements and directly in the form XML. This is done in
post processing of the suite file in corehq.apps.app_manager.suite_xml.post_process.instances.

11.3.3 How instances work

When running applications instances are initialized for the current context using an instance declaration which ties the
instance ID to the actual instance model:

<instance id=”my-instance” ref=”jr://fixture/my-fixture” />

This allows using the fixture with the specified ID:

instance(‘my-instance’)path/to/node

From the mobile code point of view the ID is completely user defined and only used to ‘register’ the instance in current
context. The index ‘ref’ is used to determine which instance is attached to the given ID.

11.3. Post Processors 41

CommCareHQ Documentation, Release 1.0

11.3.4 Instances in CommCare HQ

In CommCare HQ we allow app builders to reference instance in many places in the application but don’t require that
the app builder define the full instance declaration.

When ‘building’ the app we rely on instance ID conventions to enable the build process to determine what ‘ref’ to use
for the instances used in the app.

For static instances like ‘casedb’ the instance ID must match a pre-defined name. For example

• casedb

• commcaresession

• groups

Other instances use a namespaced convention: “type:sub-type”. For example:

• commcare-reports:<uuid>

• item-list:<fixture name>

11.3.5 Custom instances

App builders can define custom instances in a form using the ‘CUSTOM_INSTANCES’ plugin

11.3.6 RemoteRequestsHelper

The <remote-request> descends from the <entry>. Remote requests provide support for CommCare to request data
from the server and then allow the user to select an item from that data and use it as a datum for a form. In practice,
remote requests are only used for case search and claim workflows.

This case search config UI in app manager is a thin wrapper around the various elements that are part of
<remote-request>, which means RemoteRequestsHelper is not especially complicated, although it is rather long.

Case search and claim is typically an optional part of a workflow. In this use case, the remote request is accessed via an
action, and the rewind construct is used to go back to the main flow. However, the flag USH_INLINE_SEARCH supports
remote requests being made in the main flow of a session. When using this flag, a <post> and query datums are added
to a normal form <entry>. This makes search inputs available after the search, rather than having them destroyed by
rewinding.

This module includes SessionEndpointRemoteRequestFactory, which generates remote requests for use by ses-
sion endpoints. This functionality exists for the sake of smart links: whenever a user clicks a smart link, any cases that
are part of the smart link need to be claimed so the user can access them.

11.3.7 ResourceOverrideHelper

This is dead code. It supports a legacy feature, multi-master linked applications.

The actual flag has been removed, but a lot of related code still exists.

42 Chapter 11. The Suite

https://github.com/dimagi/commcare-core/wiki/SessionStack#mark-and-rewind

CommCareHQ Documentation, Release 1.0

11.3.8 WorkflowHelper

This is primarily used for end of form navigation and form linking. It contains logic to determine the proper sequence
of commands to navigate a particular place in an app, such as a specific case list. It also needs to provide any datums
required to reach that place in the app.

Because CommCare’s UI logic is driven by the data currently in the user’s session and the data needed by forms, rather
than being directly configured, this means HQ needs to predict how CommCare’s UI logic will behave, which is difficult
and results in code that’s easily disturbed by new features that influence navigation.

Understanding stacks in the CommCare Session is useful for working with WorkflowHelper.

Some areas to be aware of:

• Datums can either require manual selection (from a case list) or can be automatically selected (such as the user-
case id).

• HQ names each datum, defaulting to case_id for datums selected from case lists. When HQ determines that a
form requires multiple datums, it creates a new id for the new datum, which will often incorporate the case type.
It also may need to rename datums that already exist - see _replace_session_references_in_stack.

• To determine which datums are distinct and which represent the same piece of information, HQ has matching
logic in _find_best_match.

• get_frame_children generates the list of frame children that will navigate to a given form or module, mim-
icking CommCare’s navigation logic

• Shadow modules complicate this entire area, because they use their source module’s forms but their own module
configuration.

• There are a bunch of advanced features with their own logic, such as advanced modules, but even the basic logic
is fairly complex.

• Within end of form navigation and form linking, the “previous screen” option is the most fragile. Form linking
has simpler code, since it pushes the complexity of the feature onto app builders.

11.3. Post Processors 43

https://github.com/dimagi/commcare-core/wiki/SessionStack

CommCareHQ Documentation, Release 1.0

44 Chapter 11. The Suite

CHAPTER

TWELVE

SYNCING LOCAL HQ INSTANCE WITH AN ANDROID PHONE

12.1 No syncing or submitting, easy method

If you would like to use a url or barcode scanner to download the application to

your phone here is what you need to setup. You won’t be able to submit or sync

using this method, but it is easier.

12.1.1 Make sure your local django application is accessible over the network

The django server will need to be running on an ip address instead of localhost.

To do this, run the application using the following command, substituting your

local IP address.

./manage.py runserver 192.168.1.5:8000

Try accessing this url from the browser on your phone to make sure it works.

12.1.2 Make CommCare use this IP address

The url an application was created on gets stored for use by the app builder

during site creation. This means if you created a site and application

previously, while using a ‘localhost:8000’ url, you will have to make a code

tweak to have the app builder behave properly.

The easiest way to check this is to see what url is shown below the barcode on

the deploy screen.

If it is currently displaying a localhost:8000/a/yourapp/... url then open

localsettings.py and set BASE_ADDRESS = "192.168.1.5:8000" substituting

192.168.1.5 with your local IP address.

45

CommCareHQ Documentation, Release 1.0

12.1.3 Try it out

With this set up, you should be able to scan the barcode from your phone to

download and install your own locally built CommCare application!

12.2 Submitting and syncing from your local HQ instance (harder
method)

12.2.1 Install nginx

sudo apt-get install nginx or

brew install nginx

12.2.2 Install the configuration file

In /etc/nginx/nginx.conf, at the bottom of the http{} block, above any other site includes, add the line:

include /path/to/commcarehq/deployment/nginx/cchq_local_nginx.conf;

12.2.3 Start nginx

sudo nginx

12.2.4 Make sure your local django application is accessible over the network

./manage.py runserver

Try accessing http://localhost/a/domain and see if it works. nginx should

proxy all requests to localhost to your django server.

12.2.5 Make Commcare use your local IP address

Set the BASE_ADDRESS setting in localsettings.py to your IP address (e.g.

192.168.0.10), without a port.

Additionally, modify deployment/nginx/cchq_local_nginx.conf to replace localhost with your IP address as
server_name. For example, set server_name as 192.168.0.10. Then run sudo nginx -s reload or brew
services restart nginx to reload configuration.

You should now be able to access http://your_ip_address/a/domain from a phone or other device on the same
network.

Note: You’ll have to update these if you ever change networks or get a new IP address.

46 Chapter 12. Syncing local HQ instance with an Android Phone

CommCareHQ Documentation, Release 1.0

12.2.6 Rebuild and redeploy your application

You’ll have to rebuild and redeploy your application to get it to sync.

12.2. Submitting and syncing from your local HQ instance (harder method) 47

CommCareHQ Documentation, Release 1.0

48 Chapter 12. Syncing local HQ instance with an Android Phone

CHAPTER

THIRTEEN

DIRECTLY MODIFYING APP BUILDS (CCZ FILES)

During development, it’s occasionally useful to directly edit app files.

CommCare apps are bundled as .ccz files, which are just zip files with a custom extension.

See ccz.sh for utilities for unzipping, editing, and rezipping CCZ files. Doing this via the command line is often cleaner
than doing it an in OS, which may add additional hidden files.

49

https://github.com/dimagi/commcare-hq/tree/master/scripts/ccz.sh

CommCareHQ Documentation, Release 1.0

50 Chapter 13. Directly Modifying App Builds (CCZ files)

CHAPTER

FOURTEEN

ADDING COMMCARE BUILDS TO COMMCARE HQ

14.1 Using a management command

• ./manage.py add_commcare_build –latest To fetch the latest released build from github

• ./manage.py add_commcare_build –build_version 2.53.0 To manually specify the build number to use

14.2 In the web UI

• Go to http://HQ_ADDRESS/builds/edit_menu/

• In the second section Import a new build from the build server

1. In the Version field input the version in x.y.z format

2. Click Import Build

• In the first section Menu Options add the version to HQ to make sure the build is available in the app settings.

51

CommCareHQ Documentation, Release 1.0

52 Chapter 14. Adding CommCare Builds to CommCare HQ

CHAPTER

FIFTEEN

WEB APPS JAVASCRIPT

This document is meant to orient developers to working with Web Apps. Its primary audience is developers who are
familiar with CommCare HQ but not especially familiar with CommCare mobile or formplayer.

15.1 System Architecture

High-level pieces of the system:

• Web Apps is a piece of CommCare HQ that allows users to enter data in a web browser, providing a web
equivalent to CommCare mobile. Like the rest of HQ, web apps is built on django, but it is much heavier
on javascript and lighter on python than most areas of HQ. While it is hosted on HQ, its major “backend” is
formplayer.

• Formplayer is a Java-based service for entering data into XForms. Web apps can be thought of as a UI for this
service. In this vein, the bulk of web apps javascript implements a javascript application called “Formplayer-
Frontend”. This makes the word “formplayer” sometimes ambiguous in this document: usually it describes the
Java-based service, but it also shows up in web apps code references.

• CloudCare is a legacy name for web apps. Web apps code is in the cloudcare django app. It should not be used
in documentation or anything user-facing. It shouldn’t be used in code, either, unless needed for consistency. It
mostly shows up in filenames and URLs.

Web apps is tightly coupled with formplayer, so check out the formplayer README.

15.1.1 Is Web Apps Part of HQ? Yes and No.

Web apps is a part of HQ, but once you move into an app, its communication with the rest of HQ is quite limited.

Ways in which web apps is a typical piece of HQ code:

• The cloudcare django app contains the HQ side of web apps.

• The cloudcare.views module contains views. Note that there’s just one major view for web apps,
FormplayerMain, and another for app preview, PreviewAppView.

• When you look at the web apps home page, where there’s a tile for each app, those apps come from HQ.

• Web apps does have some interactions with HQ once you’re in an app:

– The Log In As action works via HQ

– HQ provides some system information, like the current user’s username and the mapbox API key, via the
original context and initial page data

– HQ directly serves multimedia files

53

https://github.com/dimagi/formplayer/
https://github.com/dimagi/commcare-hq/blob/master/docs/formplayer.rst

CommCareHQ Documentation, Release 1.0

– Web apps calls HQ analytics code (Google Analytics, Kissmetrics, etc.)

However, in most ways, once you move into an app, web apps only interacts with formplayer and is just a thin UI layer.

Also, before going into an app, on the web apps home page, the sync and saved forms options are formplayer requests.

Example: Case Search

As an example, consider case search, where the user triggers a search that runs against all cases in the domain, not just
cases in their casedb, which requires a query to postgres.

If web apps were a typical area of HQ, this might be implemented as a single ajax request:

Instead, formplayer acts as an intermediary. Web apps sends a navigation request to formplayer, which constructs and
sends a search request to HQ, which returns a search results response to formplayer, which transforms the results into
a case list response and sends that back to web apps.

Note that formplayer does a good deal of processing here. It’s formplayer that determines a search request is needed,
and it’s formplayer that processes the results and turns them into a table. Web apps doesn’t even know that a search
happened.

This approach clearly isn’t minimizing network requests. However, this architecture is what allows CommCare mobile
and web apps to share the majority of their logic, which is huge for developing and maintaining features to work on
both platforms.

This architecture also makes formplayer responsible for security. Formplayer authorizes the user, via a request to HQ.
It also means that formplayer mediates all access to data, so the user never has access to the full restore. This means that
in-app limitations, like case list filters, are genuinely firm boundaries. You could imagine a javascript implementation
of formplayer, which would reduce network requests, but would involve the browser making a request for the full restore,
which the user could then inspect.

54 Chapter 15. Web Apps JavaScript

CommCareHQ Documentation, Release 1.0

15.2 Anatomy of a Web Apps Feature

The relationships between HQ, formplayer, and mobile mean that web apps work frequently involves working in mul-
tiple languages, in multiple repositories, which may have different release processes.

New features require some or all of the following:

Repository Language
App manager UI where the the feature is enabled & configured commcare-hq Python / HTML / JavaScript
App build logic, typically changes to suite generation commcare-hq Python
New model for the configuration commcare-core Java
Formplayer processing to add the new feature to a response formplayer Java
Web apps UI for the feature commcare-hq JavaScript / HTML
CommCare Mobile UI for the new feature commcare-

android
Java

Not all features have all of these pieces:

• Some features don’t require any Java

– They might use existing flexible configuration, like adding a new appearance attribute value to support a
new data entry widget

– They might rearrange existing constructs in a new way. CommCare supports a much broader set of func-
tionality than what HQ allows users to configure.

• Some features don’t get implemented on mobile.

• Some features, like case search, have additional HQ work because they interact with HQ in ways beyond what’s
described above.

15.2.1 Example: Registration from Case List

As an example, consider registration from the case list:

• A CommCare HQ user goes to the module settings page in app builder and turns on the feature, selecting the
registration form they want to be accessible from the case list.

– This adds a new attribute to their Application document - specifically, it populates case_list_form on
a Module.

• When the user makes a new build of their app, the app building code reads the Application doc and writes out
all of the application files, including the suite.xml.

– The module’s case list configuration is transformed into a detail element, which includes an action element
that represents the case list form.

• When a Web Apps user clicks the menu’s name to access the case list, web apps sends a navigate_menu request
to formplayer that includes a set of selections (see navigation and replaying of sessions).

– The formplayer response tells web apps what kind of sceen to display:

∗ The type is entities which tells web apps to display a case list UI

∗ The entities list contains the cases and their properties

∗ The actions list includes an action for the case list registration form, which tells web apps to display
a button at the bottom of the case list with the given label, that when clicked will add the string action

15.2. Anatomy of a Web Apps Feature 55

https://confluence.dimagi.com/display/commcarepublic/Minimize+Duplicates+Method+1%3A+Registration+From+the+Case+List
https://github.com/dimagi/commcare-core/wiki/Suite20#detail
https://github.com/dimagi/commcare-core/wiki/Suite20#action
https://github.com/dimagi/commcare-hq/blob/master/docs/formplayer.rst#navigation-and-replaying-of-sessions

CommCareHQ Documentation, Release 1.0

0 to the selections list and then send formplayer another navigation request, which will cause form-
player to send back a form response for the registration form, which web apps will then display for the
user.

Note how generic the concepts web apps deals with are: “entities” can be cases, fixture rows, ledger values, etc.
Web apps doesn’t know what cases are, and it doesn’t know the difference between an action that triggers a case list
registration form and an action that triggers a case search.

15.3 JavaScript Overview

The remainder of this document discusses the web apps front end, which is the javascript in corehq.apps.
cloudcare.static.cloudcare.js. As described above, in many ways this code is independent of the rest of HQ.

Think of the web apps code as split into two major pieces: form entry and everything else.

Form entry contains all interaction while filling out a form: all the different types of questions, the logic for validating
answers as the user fills them out, etc. This code is written in a combination of knockout and vanilla JS, and it’s quite
old (pre-2014).

Wrapped around the form entry code is everything else, which is controlled by the FormplayerFrontend javascript ap-
plication. The single-page application (SPA) approach is unique in HQ. This is also the only area of HQ that uses Back-
bone and Marionette. Most of this code was written, or substantially re-written, around 2016. FormplayerFrontend
controls:

• In-app navigation, case lists, case search, etc.

• Web apps home screen displaying all of a domain’s apps

• Syncing

• Saved forms

• Log In As

15.4 JavaScript Vocabulary

Tight coupling with formplayer means web apps tends to use formplayer/mobile/CommCare vocabulary rather than
HQ vocabulary: “entities” instead of “cases”, etc.

The major CommCare/HQ concepts FormplayerFrontend deals with are apps, users, menus, and sessions. “Apps” and
“users” are the same concepts they are in the rest of HQ, while a “menu” is a UI concept that covers the main web apps
screens, and “sessions” means incomplete forms.

15.4.1 Apps

These are HQ apps. Most of the logic around apps has to do with displaying the home screen of web apps, where you
see a tiled list of apps along with buttons for sync, settings, etc.

This home screen has access to a subset of data from each app’s couch document, similar but not identical to the “brief
apps” used in HQ that are backed by the applications_brief couch view.

Once you enter an app, web apps no longer has access to this app document. All app functionality in web apps is
designed as it is in mobile, with the feature’s configuration encoded in the form XML or suite.xml. That config is then
used to generate the web apps UI and to formulate requests to formplayer.

56 Chapter 15. Web Apps JavaScript

https://backbonejs.org/
https://backbonejs.org/
https://marionettejs.com/

CommCareHQ Documentation, Release 1.0

15.4.2 Users

These are HQ users, although the model has very few of the many attributes of CouchUser.

Most of the time you’re only concerned with the current user, who is accessible by requesting currentUser from the
FormplayerFrontEnd’s channel (see below for more on channels).

The users code also deals with the Log In As workflow. Log In As is often described as “restore as” in the code: the
user has a restoreAs attribute with the username of the current Log In As user, the RestoreAsBanner is the yellow
banner up top that shows who you’re logged in as, and the RestoreAsView is the Log In As screen. The current Log
In As user is stored in a cookie so that users do not need to repeat the workflow often.

15.4.3 Menus

This is where the bulk of new web apps development happens. This contains the actual “menu” screen that lists forms
& sub-menus, but it also contains case lists, case details, and case search screens.

menus/views.js contains the views for case list and case detail, while views/query.js contains the case search view.

15.4.4 Sessions

These are incomplete forms - the same incomplete forms workflow that happens on mobile, but on web apps, incomplete
forms are created automatically instead of at the user’s request. When a user is in form entry, web apps creates an
incomplete form in the background and stores the current answers frequently so they can be accessed if the user closes
their browser window, etc. These expire after a few days, maybe a week, exact lifespan might be configurable by a
project setting. They’re accessible from the web apps home screen.

15.5 JavaScript Directory Structure

All of this code is stored in corehq.apps.cloudcare.static.cloudcare.js

It has top-level directories for the two major areas described above: form_entry for in-form behavior and formplayer
for the FormplayerFrontend application. There are also a few top-level directories and files for miscellaneous be-
havior.

15.5.1 form_entry

The form_entry directory contains the logic for viewing, filling out, and submitting a form.

This is written in knockout, and it’s probably the oldest code in this area.

Major files to be aware of:

• form_ui.js defines Question and Container, the major abstractions used by form definitions. Container is
the base abstraction for groups and for forms themselves.

• entries.js defines Entry and its many subclasses, the widgets for entering data. The class hierarchy of entries has a
few levels. There’s generally a class for each question type: SingleSelectEntry, TimeEntry, etc. Appearance
attributes can also have their own classes, such as ComboboxEntry and GeoPointEntry.

• web_form_session.js defines the interaction for filling out a form. Web apps sends a request to formplayer every
time a question is answered, so the session manages a lot of asynchronous requests, using a task queue. The
session also handles loading forms, loading incomplete forms, and within-form actions like changing the form’s
language.

15.5. JavaScript Directory Structure 57

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js
https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/cloudcare/static/cloudcare/js/form_entry
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/form_entry/form_ui.js
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/form_entry/entries.js
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/form_entry/web_form_session.js

CommCareHQ Documentation, Release 1.0

Form entry has a fair amount of test coverage. There are entry-specific tests and also tests for web_form_session.

15.5.2 formplayer

The formplayer directory contains logic for selecting an app, navigating through modules, displaying case lists, and
almost everything besides filling out a form.

This is written using Backbone and Marionette. Backbone is an MVC framework for writing SPAs, and Marionette is
a library to simplify writing Backbone views.

FormplayerFrontend is the “application” in this SPA.

15.5.3 Miscellany

This is everything not in either the form_entry or formplayer directory.

debugger

This controls the debugger, the “Data Preview” bar that shows up at the bottom of app preview and web apps and lets
the user evaluate XPath and look at the form data and the submission XML.

preview_app

This contains logic specific to app preview.

There isn’t much here: some initialization code and a plugin that lets you scroll by grabbing and dragging the app
preview screen.

The app preview and web apps UIs are largely identical, but a few places do distinguish between them, us-
ing the environment attribute of the current user. Search for the constants PREVIEW_APP_ENVIRONMENT and
WEB_APPS_ENVIRONMENT for examples.

hq_events.js, although not in this directory, is only really relevant to app preview. It controls the ability to communicate
with HQ, which is used for the “phone icons” on app preview: back, refresh, and switching between the standard
“phone” mode and the larger “tablet” mode.

config.js

This controls the UI for the Web Apps Permissions page, in the Users section of HQ. Web apps permissions are not
part of the standard roles and permissions framework. They use their own model, which grants/denies permissions to
apps based on user groups.

formplayer_inline.js

Inline formplayer is for the legacy “Edit Forms” behavior, which allowed users to edit submitted forms using the web
apps UI. This feature has been a deprecation path for quite a while, largely replaced by data corrections. However, there
are still a small number of clients using it for workflows that data corrections doesn’t support.

58 Chapter 15. Web Apps JavaScript

https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/hq_events.js

CommCareHQ Documentation, Release 1.0

utils.js

This contains miscellaneous utilities, mostly around error/success/progress messaging:

• Error and success message helpers

• Progress bar: the thin little sliver at the very top of both web apps and app preview

• Error and success messaging for syncing and the “settings” actions: clearing user data and breaking locks

• Sending formplayer errors to HQ so they show up in sentry

markdown.js

Code for initializing the markdown renderer including a bunch of code, injectMarkdownAnchorTransforms and its
helpers, related to some custom feature flags that integrate web apps with external applications.

15.6 JavaScript Architectural Concepts

There are a few ways that web apps is architecturally different from most HQ javascript, generally related to it being a
SPA and being implemented in Backbone and Marionette.

It’s heavily asynchronous, since it’s a fairly thin UI on top of formplayer. Want to get the a case’s details? Ask form-
player. Want to validate a question? Ask formplayer. Adding functionality? It will very likely require a formplayer PR
- see “Anatomy of a Web Apps Feature” above.

Web apps is also a relatively large piece of functionality to be controlled by a single set of javascript. It doesn’t exactly
use globals, but FormplayerFrontend is basically a god object, and it uses a global message bus - see “Events” below.

15.6.1 Persistence

Web apps has only transient data. All persistent data is handled by formplayer and/or HQ. The data that’s specific
to web apps consists mostly of user-related settings and is handled by the browser: cookies, local storage, or session
storage.

The Log In As user is stored in a cookie. Local storage is used for the user’s display options, which are the settings for
language, one question per screen, etc. Session storage is also used to support some location handling and case search
workflows.

Note that these methods aren’t appropriate for sensitive data, which includes all project data. This makes it challenging
to implement features like saved searches.

15.6.2 Application

FormplayerFrontend is a Marionette Application, which ties together a bunch of views and manages their behavior.
It’s defined in formplayer/app.js.

For day-to-day web apps development, it’s just useful to know that FormplayerFrontend controls basically every-
thing, and that the initial hook into its behavior is the start event, so we have a before:start handler and a start
handler.

15.6. JavaScript Architectural Concepts 59

https://marionettejs.com/docs/master/marionette.application.html
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/app.js

CommCareHQ Documentation, Release 1.0

15.6.3 Regions

Marionette’s regions are UI containers, defined in the FormplayerFrontend’s before:start handler.

We rarely touch the region-handling code, which defines the high-level structure of the page: the “main” region, the
progress bar, breadcrumbs, and the restore as banner. The persistent case tile also has a region. Most web apps
development happens within the main region.

It is sometimes useful to know how the breadcrumbs work. The breadcrumbs are tightly tied to formplayer’s selections-
based navigation. See Navigation and replaying of sessions for an overview and examples. The breadcrumbs use this
same selections array, which is also an attribute of CloudcareURL, with one breadcrumb for each selection.

15.6.4 Backbone.Radio and Events

Marionette integrates with Backbone.Radio to support a global message bus.

Although you can namespace channels, web apps uses a single formplayer channel for all messages, which is accessed
using FormplayerFrontend.getChannel(). You’ll see calls to get the channel and then call request to get at a
variety of global-esque data, especially the current user. All of these requests are handled by reply callbacks defined
in FormplayerFrontend.

FormplayerFrontend also supports events, which behave similarly. Events are triggered directly on the
FormplayerFrontend object, which defines on handlers. We tend to use events for navigation and do namespace
some of them with :, leading to events like menu:select, menu:query, and menu:show:detail. Some helper
events are not namespaced, such as showError and showSuccess.

15.6.5 Routing, URLs, and Middleware

As in many SPAs, all of web apps’ “URLs” are hash fragments appended to HQ’s main cloudcare URL, /a/<DOMAIN>/
cloudcare/apps/v2/

Navigation is handled by a javascript router, Marionette.AppRouter, which extends Backbone’s router.

Web apps routes are defined in router.js.

Routes outside of an application use human-readable short names. For example:

• /a/<DOMAIN>/cloudcare/apps/v2/#apps is the web apps home screen, which lists available apps and actions
like sync.

• /a/<DOMAIN>/cloudcare/apps/v2/#restore_as is the Log In As screen

Routes inside an application serialize the CloudcareURL object.

CloudcareURL contains the current state of navigation when you’re in an application. It’s basically a js object with
getter and setter methods.

Most app-related data that needs to be passed to or from formplayer ends up as an attribute of CloudcareURL. It inter-
faces almost directly with formplayer, and most of its attributes are properties of formplayer’s SessionNavigationBean.

CloudcareURL is defined in formplayer/utils/utils.js although it probably justifies its own file.

URLs using CloudcareURL are not especially human-legible due to JSON serialization, URL encoding, and the ob-
scurity of the attributes. Example URL for form entry:

/a/<DOMAIN>/cloudcare/apps/v2/#%7B%22appId%22%3A%226<APP_ID>%22%2C%22steps%22%3A%5B%221%22%2C%22<CASE_ID>%22%2C%220%22%5D%2C%22page%22%3Anull%2C%22search%22%3Anull%2C%22queryData%22%3A%7B%7D%2C%22forceManualAction%22%3Afalse%7D

The router also handles actions that may not sound like traditional navigation in the sense that they don’t change which
screen the user is on. This includes actions like pagination or searching within a case list.

60 Chapter 15. Web Apps JavaScript

https://marionettejs.com/docs/master/marionette.region.html
https://github.com/dimagi/commcare-hq/blob/master/docs/formplayer.rst#navigation-and-replaying-of-sessions
https://marionettejs.com/docs/master/backbone.radio.html
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/router.js
https://github.com/dimagi/formplayer/blob/master/src/main/java/org/commcare/formplayer/beans/SessionNavigationBean.java
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/utils/utils.js

CommCareHQ Documentation, Release 1.0

Other code generally interacts with the router by triggering an event (see above for more on events). Most of router.js
consists of event handlers that then call the router’s API.

Every call to one of the router’s API functions also runs each piece of web apps middleware, defined in middleware.js.
This middleware doesn’t do much, but it’s a useful place for reset-type logic that should be called on each screen change:
scrolling to the top of the page, making sure any form is cleared out, etc. It’s also where the “User navigated to. . . ”
console log messages come from.

15.6.6 Tests

There are tests in the spec directory. There’s decent test coverage for js-only workflows, but not for HTML interaction.

15.7 Marionette Views

Web apps development frequently happens in FormplayerFrontend views. These views are javascript classes that
inherit from Marionette.View. This section describes the View attributes that web apps most frequently uses.

For code references, take a look at the query views, which control the case search screen, or the menus views, which
control menus, case lists, and case details.

15.7.1 template and getTemplate

These attributes link view code with the relevant HTML template.

We typically use template and just fetch a template by its id, then run it through underscore’s _.template func-
tion. The QueryListView, which controls the case search screen, is a good example, defining template as _.
template($("#query-view-list-template").html() || "").

getTemplate is a callback, so it has access to this and allows for more com-
plex logic. We use it in the <MenuView https://github.com/dimagi/commcare-
hq/blob/9baa5a05181e3e74cdf8608223eeff69aca5c0d7/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js#L35-
L43>__ to determine whether to display the menu in a list style or in a grid style.

15.7.2 tagName, className, and attributes

All views have a single encompassing container, which is added by Marionette, so it doesn’t show up in the view’s
HTML template. These attributes influence that container.

tagName, which can be a string or a callback, defines the HTML node type, typically div or tr.

className allows setting a CSS class on the container.

attributes allows setting HTML attributes. We mostly use this for accessibility, to set attributes like tabindex.

15.7. Marionette Views 61

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/middleware.js
https://marionettejs.com/docs/master/marionette.view.html
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js
https://github.com/dimagi/commcare-hq/blob/1a60854e1bf075c64f4253184ba30abfd30ea488/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L273

CommCareHQ Documentation, Release 1.0

15.7.3 initialize, templateContext, and onRender

initialize is for any setup, particularly for storing any options that were passed into the view (although this.
options is available throughout the view).

templateContext is for building an object of context to pass to the template, as with _.template and django views.

onRender is called every time Marionette renders the view. We use this primarily for attaching events to content. Note
that Marionette has its own attributes for event handling, discussed below, but onRender is useful for non-standard
events provided by third-party widgets like select2 and jQuery UI.

15.7.4 ui, events, and modelEvents

These attributes are for event handling.

ui is an object where keys are identifiers and values are jQuery selectors. Elements defined in ui are available to other
code in the view using this.ui. For an example, see how QueryListView defines ui elements for the case search
screen’s submit and clear buttons.

events ties elements from uiwith standard HTML events. Events references the event, the ui element, and the callback
to invoke. Again, QueryListView is a good example.

modelEvents attaches callbacks to events on the Backbone model, as opposed to ui events. We don’t use this often, but
QueryView, which controls an individual search field on the case search screen, uses it to force the view to re-render
whenever the underlying model changes, so that select2 behaves properly.

15.7.5 childView, childViewContainer, and childViewOptions

These options apply to views that extend Marionette.CollectionView. These views are structured to display a list of child
views. As an example, QueryListView controls the case search screen and has a child QueryView for each individual
search field. The case list’s CaseListView is a more complex example, with a CaseView child view that has several
subclasses.

childView names the view that is a child of this view.

childViewContainer tells Marionette where in the parent view to render the children. This can be an HTML node
name, analagous to tagName, or it can be a jQuery selector identifying a specific element in the view that should
contain the children.

childViewOptions allows the parent view to pass data to the children views. Some use cases:

• DetailTabListView * uses it to pass information about the parent to the child views.

• QueryListView uses it to give the child views access to the entire parent view.

• MenuListView uses it to pass information that the parent view calculates, namely, the child’s index position in
the collection.

62 Chapter 15. Web Apps JavaScript

https://github.com/dimagi/commcare-hq/blob/1a60854e1bf075c64f4253184ba30abfd30ea488/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L288-L292
https://github.com/dimagi/commcare-hq/blob/1a60854e1bf075c64f4253184ba30abfd30ea488/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L294-L297
https://github.com/dimagi/commcare-hq/blob/1a60854e1bf075c64f4253184ba30abfd30ea488/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L193-L195
https://marionettejs.com/docs/master/marionette.collectionview.html
https://github.com/dimagi/commcare-hq/blob/d8ebdc04a9d9ea08f358cd695f93c501585ced2c/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L271
https://github.com/dimagi/commcare-hq/blob/d8ebdc04a9d9ea08f358cd695f93c501585ced2c/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L271
https://github.com/dimagi/commcare-hq/blob/9baa5a05181e3e74cdf8608223eeff69aca5c0d7/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js#L288
https://github.com/dimagi/commcare-hq/blob/9baa5a05181e3e74cdf8608223eeff69aca5c0d7/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js#L224
https://github.com/dimagi/commcare-hq/blob/9baa5a05181e3e74cdf8608223eeff69aca5c0d7/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js#L659-L663
https://github.com/dimagi/commcare-hq/blob/d8ebdc04a9d9ea08f358cd695f93c501585ced2c/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L276
https://github.com/dimagi/commcare-hq/blob/9baa5a05181e3e74cdf8608223eeff69aca5c0d7/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js#L115-L120

CHAPTER

SIXTEEN

FORMPLAYER IN HQ

This documentation describes how formplayer fits into the larger CommCare system, especially how it relates to Comm-
Care HQ development. For details on building, running, and contributing to formplayer, see the formplayer repository.

16.1 What Is Formplayer?

Formplayer is a Java Spring Boot server that wraps commcare-core and presents its main features as an HTTP API.
CommCare HQ’s Web Apps, App Preview, and SMS Forms features are built on top of it:

• Web Apps is a single-page application, inlined into a CommCare HQ template, that provides a web UI backed
by the formplayer API.

• App Preview is essentially the same as web apps, but embedded as a cell-phone-shaped iframe within the App
Builder.

• SMS Forms serializes a form filling session over SMS in a question / answer sequence that is handled by the
main HQ process, which hits formplayer’s API to send answers and get the next question.

16.2 Repository Overview

• commcare-android: The UI layer of CommCare mobile.

• commcare-core: The CommCare engine, this powers both CommCare mobile and formplayer. Mobile uses the
master branch, while formplayer uses the formplayer branch. The two branches have a fairly small diff.

• formplayer

• commcare-hq: HQ hosts web apps and the processes that run SMS forms.

63

https://github.com/dimagi/formplayer/
https://github.com/dimagi/commcare-core
https://github.com/dimagi/commcare-android
https://github.com/dimagi/commcare-core
https://github.com/dimagi/formplayer
https://github.com/dimagi/commcare-hq

CommCareHQ Documentation, Release 1.0

16.3 Relevant Architectural Decisions

While a full detailing of formplayer’s architecture is beyond the scope of this document, a few architectural decisions
are particularly useful for HQ devs who are new to formplayer to understand.

16.3.1 Sandboxes

Sharing the commcare-core code between mobile and formplayer allows us to keep CommCare Android and web apps
essentially compatible. However, because commcare-core was first written for mobile some of the paradigms it uses
make more sense on mobile than on the web. Mobile is offline-first, so submitting up newly entered data and syncing
back down changes others have made are intentional steps designed not to block someone who was unable to reach
the server for hours, days, or longer. That model makes very little sense on the always-online Web Apps, but the
sync/restore process is still a core part of the working model. There’s even a “Sync” button shown to the user in the
web apps UI.

Rather than always fetching the latest data from the source of truth, formplayer works off of locally synced subsets of
data like those that would be on people’s phones if every user had their own phone. These “sandboxes” are stored as
Sqlite DB files, as they are on the phone. A phone typically has one db file and one user, whereas on formplayer, there
are as many db files as there are users, i.e. tens of thousands. Each file has its own slice of the data synced down from
the source of truth, but always just a little bit out of date if anyone’s updated it after their last sync.

16.3.2 Request routing

Each user is tied by a formplayer_session cookie directly to a machine. The cookie is just a routing hint that contains
the user id but doesn’t constitute authentication. That sticky association only changes if we add or remove machines,
and in that case, the minimum number of associations are changed to rebalance it because we use “consistent hashing”.
In steady state, one user’s requests will always be served by the same machine.

An obvious side effect of that is that if a machine is down, all users assigned to that machine will not be able to do
anything until the machine is back up. During a formplayer deploy, when we have to restart all formplayer processes, a
rolling restart doesn’t help uptime, since for every individual user their machine’s process will be down while it restarts.

Routing implications for adding and removing machines

It’s expensive to delete a user’s sqlite sandbox, because rebuilding it requires requesting a full restore from HQ, but it’s
always safe to delete it, because that rebuild from the source of truth will get the user back to normal. This property
makes removing machines a safe operation. Similarly, adding new machines doesn’t pose an issue because the subset
of users that get routed to them will just have their sqlite db file rebuilt on that machine the next time it’s needed. These
sandbox db files effectively serve as a cache.

What does cause a problem is if a user is associated with machine A, and then gets switched over to machine B, and
then goes back to machine A. In that situation, any work done on machine A wouldn’t get synced to machine B until
the next time the user did a “sync” on machine B. Until then, they would be working from stale data. This is especially
a problem for SMS Forms, where the user doesn’t have an option to explicitly sync, and where if the underlying case
database switches mid-form or between consecutive forms to a stale one, the user will see very unintuitive behavior.
Formplayer currently doesn’t have a concept of “this user has made a request handled by a different formplayer machine
since the last time this machine saw this user”; if it did and it forced a sync in that situation, that would mostly solve this
problem. This problem can show up if you expand the cluster and then immediately scale it back down by removing
the new machines.

Lastly, sqlite db files don’t hang around forever. So that stale files don’t take up ever more disk, all formplayer sqlite db
files not modified in the last 5 days are regularly deleted. The “5 days” constant is set by formplayer_purge_time_spec.

64 Chapter 16. Formplayer in HQ

http://nginx.org/en/docs/http/ngx_http_upstream_module.html#hash
https://github.com/dimagi/commcare-cloud/blob/e5871a3dca4c444beb55855a7ba6b8f4e3473c8f/environments/production/public.yml#L61

CommCareHQ Documentation, Release 1.0

Balancing issues for large numbers of machines

Each user has a widely variable amount of traffic, and the more machines there are in the system, the wider the spread
becomes between the least-traffic machine and the most-traffic machine, both statistically and in practice.

If you randomly select 10,000 values from [1, 10, 100, 100] and then divide them into n chunks, the sum of the values
in each chunk have a wider distribution the larger n is. Here the values represent each user and how much traffic they
generate, so this is meant to show that the more machines you have for a fixed number of users using this rigid load
balancing method, the wider the spread is between the least-used and most-used machine.

This means that fewer, larger machines is better than more smaller machines. However, we have also found that form-
player performance drops sharply when you go from running on machines with 64G RAM and 30G java heap to
machines with 128G RAM and (still) 30G java heap. So for the time being our understanding is that the max machine
size is 64G RAM to run formplayer on. This, of course, limits our ability to mitigate the many-machines load imbalance
problem.

16.4 Navigation

The purpose of this section is to introduce formplayer navigation in the context of CommCare HQ. CommCare allows
for a wide variety of behavior, but applications built in HQ use a subset of this behavior and a few common workflows.

For a full picture of CommCare, see the commcare-core wiki, in particular

• CommCare Session

• CommCare Session External Instance Definition

• CommCare 2.0 Suite Definition

Note: This document uses case-centric language, because that is the entity most often used in HQ. Any references to
cases could be changed to any model that is backed by a similar XML structure.

16.4.1 The CommCare Session

A single CommCare session is (loosely) defined as the series of actions taken by a user from the time that they view
the home screen until the time that they press “Submit” in a form, plus the data that is collected and persisted along
the way as those those actions are taken.

The end goal of a session is to complete a form. This implies:

• Every CommCare form has specific pieces of data that it needs to have access to in order to function properly.

• Forms always get that data by referencing the session, i.e. instance('commcaresession')/session/data/
blahblahblah

• The flow of a CommCare session is always structured to ensure that a user has “collected” all of the data that a
certain form needs before allowing the user to enter that form.

The session is implemented by the class CommCareSession, with its data stored in CommCareSession.
collectedDatums. The session also keeps track of the current menu or form id, in CommCaseSession.currentCmd.
CommCareSession.getNeededData determines what information is needed next, based on the current command on the
data needed by entries associated with that command, and MenuSessionRunnerService (see below) uses that need
to determine what screen to show.

Each piece of data in the session is either:

16.4. Navigation 65

https://github.com/dimagi/commcare-core/wiki/
https://github.com/dimagi/commcare-core/wiki/SessionStack
https://github.com/dimagi/commcare-core/wiki/commcaresession
https://github.com/dimagi/commcare-core/wiki/Suite20
https://github.com/dimagi/commcare-core/blob/master/src/main/java/org/commcare/session/CommCareSession.java
https://github.com/dimagi/commcare-core/blob/d791a58880cfe22e4d23b7deaef12a0cb1e4aeee/src/main/java/org/commcare/session/CommCareSession.java#L193-L217

CommCareHQ Documentation, Release 1.0

• “Action history” - information about the actions that a user has taken in the session so far. This is useful to
implement “back” navigation, and it is also a necessary part of formplayer being a RESTful service (see the
section below on replaying sessions).

• “Collected data” - pieces of raw app data that will be used later within some form in the app, like case ids

The actions a user can take in the session are:

• Select a menu - this adds a “command id”, which identifies the menu, to the session

• Select a case (or confirm selection of a case) - this adds a “datum” to the session, the case’s id, which both serves
as a record of the selection action and identifies the case.

• Select a form - this adds a “command id”, which identifies the form, to the session

16.4.2 Screens

This section answers the question, “After each user action in a CommCare app, how does CommCare decide what
screen to show next?”

There are three principles used to answer this question:

1. Order matters: CommCare will never instruct the user to collect a datum that is listed later in a <session> block
before one listed earlier in that same block. This allows <datum>s that come later in the list to refer to ones that
came earlier, which is useful in workflows such as selecting a case that must be the child of a previously selected
case.

1. Equality of datums: CommCare is at all times aware of a universe of all datums which are required by at least
one form in the app - some of which may overlap. The most notable effect of this is that if all of the possible
actions a user is considering all require the same datum, CommCare will ask the user to select that datum before
moving on to select the action.

1. Never collect unnecessary data

At any given time, there is one piece of data that the app is focused on acquiring, and the screen that CommCare shows
is determined by the ‘type’ of that piece of data:

• If CommCare is looking for a “datum”, it will show a case list

• If CommCare is looking for a “command id”, it will show a menu screen

Before the “Start” button is pressed, CommCare is always looking for a command id (module or form), which is why
the app’s root module menu is always the first screen to be shown.

commcare-core, the engine shared by CommCare mobile, the CommCare CLI, and formplayer, has the following
types of screens:

• MenuScreen - Displays a list of menus and/or forms.

• EntityScreen - Displays a case list.

• QueryScreen - Used for case search and claim, see section below. This is the screen the displays search fields.
Search results are displayed using an EntityScreen.

• SyncScreen - Used for case search and claim, see section below. This screen isn’t visible to the user, but it
controls the sending of the claim request and then syncing.

formplayer uses these same screens, but FormplayerQueryScreen and FormplayerSyncScreen extend
QueryScreen and SyncScreen. This means that formplayer and the CLI use different logic for case search & claim.

A screen’s job is to handle input, which often includes updating the session - either setting the currentCmd or adding
an item to collectedDatums`.

66 Chapter 16. Formplayer in HQ

https://confluence.dimagi.com/display/commcarepublic/CommCare+CLI

CommCareHQ Documentation, Release 1.0

The EntityScreen is a special case, since it handles what, from the user’s perspective, are two screens: the case
list and the case detail confirmation. EntityScreen acts as a “host” screen, extending CompoundScreenHost. The
EntityDetailSubscreen, which handles the case detail, is not a full Screen but rather a Subscreen that updates
its host, the entity screen, which is then in charge of updating the session.

Case lists that allow for the selection of multiple entities have further special handling, described in formplayer docs.

16.4.3 Selections

User activity in CommCare is oriented around navigating to and then submitting forms. User actions are represented
as a series of “selections” that begin at the app’s initial list of menus and eventually end in form entry.

The selections list keeps track of actions the user has taken in the current session. Every time a user takes a navigation
action (selecting a menu, case, or form), web apps updates the selections list and sends it to formplayer as part of a
navigate_menu request.

A single selection can be:

• An integer index. This is used for lists of menus and/or forms and represents the position of the selected item.

• A case id. This indicates that the user selected the given case.

• The keyword action and an integer index, such as action 0. This represents the user selecting an action on a
detail screen. The index represents the position of the action in the detail’s list of actions.

Replaying sessions

For an example, consider the selections [1, 'abc123', 0]. These indicate that a user selected the second visible
menu, then selected case abc123, then selected the first visible menu (or form). This might have mapped to the
following requests:

• navigate_menu_start to view the first screen, a list of menus

• navigate_menu with selections [1] to select the first menu, which leads to a case list

• get_details with selections [1] to select a case and show its details

• navigate_menu with selections [1, 'abc123'] to confirm the case selection, which leads to a list of forms

• navigate_menu with selections [1, 'abc123', 0] to select the first form

• submit-all to submit the form when complete, which sends the user back to the first list of menus

Because formplayer is a RESTful service, each of these individual request plays through all of the given selections,
even those that were already completed earlier. If an early selection contained an expensive operation, that operation
can slow down requests for the rest of the session. Selections that cause side effects will cause them repeatedly.

MenuSessionRunnerService controls formplayer navigation. This largely happens in
advanceSessionWithSelections, which loops over the selections list, replaying the full session as described
above.

On each iteration, advanceSessionWithSelections determines the current screen based on the state of the
MenuSession and then adds the next selection. It handles special navigation, which mostly relates to case search
and claim (see below). When it runs out of selections, it returns the current menu, which is a response bean.

16.4. Navigation 67

https://github.com/dimagi/formplayer/wiki/Multi-Select-Case-Lists
https://github.com/dimagi/formplayer/blob/master/src/main/java/org/commcare/formplayer/services/MenuSessionRunnerService.java

CommCareHQ Documentation, Release 1.0

16.4.4 Case Search and Claim

Case search and claim allows a user to gain access to a case not already in their casedb. Case search and claim are
implemented using a “remote request”, which is an extension of an entry. While an entry’s purpose is to get the user
into an XForm, a remote request’s purpose is to send a request to the server (HQ).

From the case list, the user takes a case search action. This presents them with a multi-field search screen, the
QueryScreen. Their search inputs are sent as a request to HQ, which queries ElasticSearch for all cases in the domain
and sends an XML document back with the results. Formplayer displays these results as a case list, an EntityScreen.
When the user selects and then confirms a case, formplayer sends a POST request to HQ. This request, configured as
part of the app, creates an extension case for the selected case. When this request returns, formplayer syncs, causing
the selected case to be added to the user’s casedb. CommCare then “rewinds” to the case list where the user started, se-
lecting the case they claimed and moving them on to the next form or menu, using a mark/rewind mechanism discussed
elsewhere.

CommCare treats case search and claim as pieces of data to be gathered. Just as CommCare typically is expecting
either a command (a menu or form) or a datum (a case), it can instead expect a QUERY_REQUEST or a SYNC_REQUEST,
which indicate it should display a QueryScreen or handle a SyncScreen (send the post request and subsequent sync).

Alternate Case Search Workflows

For projects using CommCare mobile, case search and claim is typically an unusual workflow. However, projects that
use web apps, and therefore have guaranteed connectivity, may use it much more heavily, even to the point that the user
is unaware of their casedb and always uses case search to find cases.

To support this approach, HQ allows apps to be configured with several alternate navigation flows. These workflows
are gated by the USH_CASE_CLAIM_UPDATES feature flag.

The default case search and claim workflow shows the user the following screens:

• A menu screen, where the user selects a form/menu that requires a case

• A case list screen displaying the user’s casedb, where the user elects to go into case search

• A case search screen, with search inputs for various fields

• A case list screen displaying the results of the search

The alternate case search workflows allow the user to skip the casedb case list, the case search screen, or both.

To handle this skipping behavior, every iteration over the selections list in MenuSessionRunnerService.
advanceSessionWithSelections checks to see if there are any “automatic” actions needed, in
autoAdvanceSession.

68 Chapter 16. Formplayer in HQ

https://github.com/dimagi/commcare-core/wiki/SessionStack#mark-and-rewind

CHAPTER

SEVENTEEN

DEVICE RESTORE OPTIMIZATION

This document is based on the definitions and requirements for restore logic outlined in new-idea-for-extension-
cases.md.

Important terms from that document that are also used in this document:

A case is available if

• it is open and not an extension case

• it is open and is the extension of an available case.

A case is live if any of the following are true:

• it is owned and available
• it has a live child
• it has a live extension
• it is open and is the exension of a live case

17.1 Dealing with shards

Observation: the decision to shard by case ID means that the number of levels in a case hierarchy impacts restore
performance. The minimum number of queries needed to retrieve all live cases for a device can equal the number of
levels in the hierarchy. The maximum is unbounded.

Since cases are sharded by case ID. . .

• Quotes from How Sharding Works

– Non-partitioned queries do not scale with respect to the size of cluster, thus they are discouraged.

– Queries spanning multiple partitions . . . tend to be inefficient, so such queries should be done sparingly.

– A particular cross-partition query may be required frequently and efficiently. In this case, data needs to be
stored in multiple partitions to support efficient reads.

• Potential optimizations to allow PostgreSQL to do more of the heavy lifting for us.

– Shard case_index by domain.

∗ Probably not? Some domains are too large.

– Copy related case index data into all relevant shards to allow a query to run on a single shard.

∗ Nope. Effectively worse than sharding by domain: would copy entire case index to every shard because
in a given set of live cases that is the same size as or larger than the number of shards, each case will
probably live in a different shard.

69

https://gist.github.com/dannyroberts/f184daad468fb7debf10
https://gist.github.com/dannyroberts/f184daad468fb7debf10
https://medium.com/@jeeyoungk/how-sharding-works-b4dec46b3f6

CommCareHQ Documentation, Release 1.0

– Re-shard based on ownership rather than case ID

∗ Maybe use hierarchical keys since ownership is strictly hierarchical. This may simplify the sharding
function.

∗ Copy or move data between shards when ownership changes.

17.2 Data Structure

Simplified/minimal table definitions used in sample queries below.

cases
domain char
case_id char
owner_id char
is_open bool

case_index
domain char
parent_id char
child_id char
child_type enum (CHILD|EXTENSION)

Presence of a row in the case_index adjacency list table implies that the referenced cases are available. The
case_index is updated when new data is received during a device sync: new case relationships are inserted
and relationships for closed cases are deleted. All information in the case_index table is also present in the
CommCareCaseIndex and CommCareCase tables. Likewise for the cases table, which is a subset of CommCareCase.

17.3 Case Study: UATBC case structure

Sources: eNikshay App Design and Feedback - Case Structure and case_utils.py. These sources contain conflicting
information. For example:

• case_utils.py references prescription and voucher while the sheet does not.

• case_utils.py has referral related to episode, not person as in the sheet.

70 Chapter 17. Device Restore Optimization

https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py
https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py
https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589

CommCareHQ Documentation, Release 1.0

With the current sharding (by case ID) configuration, the maximum number of queries needed to get all live cases for
a device is 5 because there are 5 levels in the case hierarchy. Update: this is wrong; it could be more than 5. Example:
if a case retrieved in the 5th query has unvisited children, then at least one more query is necessary. Because any given
case may have multiple parents, the maximum number of queries is unbounded.

17.4 Algorithm to minimize queries while sharding on case ID

The algorithm (Python):

next_ids = get_cases_owned_by_device(owner_ids)
live_ids = set(next_ids)
while next_ids:

related_ids = set(get_related_cases(next_ids))
if not related_ids:

break
next_ids = related_ids - live_ids
live_ids.update(related_ids)

All queries below are simplified for the purposes of demonstration. They use the simplified table definitions from the
Data Structure section in this document, and they only return case IDs. If this algorithm is implemented it will likely
make sense to expand the queries to retrieve all case data, including case relationship data, and to query directly from
CommCareCaseIndex and CommCareCase.

The term “child” is a general term used to refer to a case that is related to another case by retaining a reference to the
other case in its set of parent indices. It does not refer to the more restrictive “child” relationship type.

Definitions:

17.4. Algorithm to minimize queries while sharding on case ID 71

https://docs.google.com/drawings/d/1JIEfV5Ak693HXwsksL0jtYsWDHvBI-VHohYcb6yiDxY/edit

CommCareHQ Documentation, Release 1.0

• OWNER_DOMAIN - the domain for which the query is being executed.

• OWNER_IDS - a set of user and group IDs for the device being restored.

• NEXT_IDS - a set of live case IDs.

get_cases_owned_by_device() retrieves all open cases that are not extension cases given a set of owner IDs for
a device. That is, it retrieves all live cases that are directly owned by a device (user and groups). The result of this
function can be retrieved with a single query:

select cx.case_id
from cases cx
left outer join case_index ci
on ci.domain = cx.domain and ci.child_id = cx.case_id

where
cx.domain = OWNER_DOMAIN and
cx.owner_id in OWNER_IDS and
(ci.child_id is null or ci.child_type != EXTENSION) and
cx.is_open = true

get_related_cases() retrieves all live cases related to the given set of live case IDs. The result of this function can
be retrieved with a single query:

-- parent cases (outgoing)
select parent_id, child_id, child_type
from case_index
where domain = OWNER_DOMAIN
and child_id in NEXT_IDS

union
-- child cases (incoming)
select parent_id, child_id, child_type
from case_index
where domain = OWNER_DOMAIN
and parent_id in NEXT_IDS
and child_type = EXTENSION

The IN operator used to filter on case ID sets should be optimized since case ID sets may be large.

Each of the above queries is executed on all shards and the results from each shard are merged into the final result set.

17.5 One query to rule them all.

Objective: retrieve all live cases for a device with a single query. This query answers the question Which cases end up
on a user’s phone? The sharding structure will need to be changed if we want to use something like this.

with owned_case_ids as (
select case_id
from cases
where
domain = OWNER_DOMAIN and
owner_id in OWNER_IDS and
is_open = true

), recursive parent_tree as (
-- parent cases (outgoing)

(continues on next page)

72 Chapter 17. Device Restore Optimization

https://dba.stackexchange.com/questions/91247/optimizing-a-postgres-query-with-a-large-in
https://gist.github.com/dannyroberts/f184daad468fb7debf10#which-cases-end-up-on-a-users-phone
https://gist.github.com/dannyroberts/f184daad468fb7debf10#which-cases-end-up-on-a-users-phone

CommCareHQ Documentation, Release 1.0

(continued from previous page)

select parent_id, child_id, child_type, array[child_id] as path
from case_index
where domain = OWNER_DOMAIN
and child_id in owned_case_ids

union
-- parents of parents (recursive)
select ci.parent_id, ci.child_id, ci.child_type, path || ci.child_id
from case_index ci
inner join parent_tree as refs on ci.child_id = refs.parent_id

where ci.domain = OWNER_DOMAIN
and not (ci.child_id = any(refs.path)) -- stop infinite recursion

), recursive child_tree as (
-- child cases (incoming)
select parent_id, child_id, child_type, array[parent_id] as path
from case_index
where domain = OWNER_DOMAIN
and (parent_id in owned_case_ids or parent_id in parent_tree)
and child_type = EXTENSION

union
-- children of children (recursive)
select
ci.parent_id,
ci.child_id,
ci.child_type,
path || ci.parent_id

from case_index ci
inner join child_tree as refs on ci.parent_id = refs.child_id

where ci.domain = OWNER_DOMAIN
and not (ci.parent_id = any(refs.path)) -- stop infinite recursion
and child_type = EXTENSION

)
select
case_id as parent_id,
null as child_id,
null as child_type,
null as path

from owned_case_ids
union
select * from parent_tree
union
select * from child_tree

17.5. One query to rule them all. 73

CommCareHQ Documentation, Release 1.0

17.6 Q & A

• Do we have documentation on existing restore logic?

– Yes: new-idea-for-extension-cases.md

– See also child/extension test cases

• new-idea-for-extension-cases.md: “[an extension case has] the ability (like a child case) to go out in the world
and live its own life.”

What does it mean for an extension case to “live its own life”? Is it meaningful to have an extension case apart
from the parent of which it is an extension? How are the attributes of an extension case “living its own life”
different from one that is not living it’s own life (I’m assuming not living its own life means it has the same
lifecycle as its parent).

– Danny Roberts:

haha i mean that may have been a pretty loosely picked phrase

I think I specifically just meant you can assign it an owner separate from its parent’s

• Is there an ERD or something similar for UATBC cases and their relationships?

– Case structure diagram (outdated)

– SDD _EY Comments_v5_eq.docx (page 24, outdated)

– eNikshay App Design and Feedback - Case Structure - Kriti

– case_utils.py - Farid

74 Chapter 17. Device Restore Optimization

https://gist.github.com/dannyroberts/f184daad468fb7debf10
https://github.com/dimagi/commcare-core/blob/master/src/test/resources/case_relationship_tests.json
https://gist.github.com/dannyroberts/f184daad468fb7debf10
https://www.dropbox.com/work/UATBC/Tech/SDD?preview=UATBC-+System+Design+Document+(SDD)+-+Case+Structure.jpg
https://www.dropbox.com/work/UATBC/tech/SDD?preview=SDD+_EY+Comments_v5_eq.docx
https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py

CHAPTER

EIGHTEEN

LOCATIONS

18.1 Location Permissions

18.1.1 Normal Access

Location Types - Users who can edit apps on the domain can edit location types. Locations - There is an “edit_locations”
and a “view_locations” permission.

18.1.2 Restricted Access and Whitelist

Many large projects have mid-level users who should have access to a subset of the project based on the organization’s
hierarchy.

This is handled by a special permission called “Full Organization Access” which is enabled by default on all user roles.
To restrict data access based on a user’s location, projects may create a user role with this permission disabled.

This is checked like so:

user.has_permission(domain, 'access_all_locations')

We have whitelisted portions of HQ that have been made to correctly handle these restricted users. Anything not
explicitly whitelisted is inaccessible to restricted users.

18.1.3 How data is associated with locations

Restricted users only have access to their section of the hierarchy. Here’s a little about what that means conceptually,
and how to implement these restrictions.

Locations: Restricted users should be able to see and edit their own locations and any descendants of those locations,
as well as access data at those locations. See also user_can_access_location_id

Users: If a user is assigned to an accessible location, the user is also accessible. See also
user_can_access_other_user

Groups: Groups are never accessible.

Forms: Forms are associated with a location via the submitting user, so if that user is currently accessible, so is the form.
Note that this means that moving a user will affect forms even retroactively. See also can_edit_form_location

Cases: Case accessibility is determined by case owner. If the owner is a user, then the user must be accessible for the
case to be accessible. If the owner is a location, then it must be accessible. If the owner is a case-sharing group, the
case is not accessible to any restricted users. See also user_can_access_case

75

CommCareHQ Documentation, Release 1.0

The SQLLocation queryset method accessible_to_user is helpful when implementing these restrictions. Also
refer to the standard reports, which do this sort of filtering in bulk.

18.1.4 Whitelist Implementation

There is LocationAccessMiddleware which controls this whitelist. It intercepts every request, checks if the user has
restricted access to the domain, and if so, only allows requests to whitelisted views. This middleware also guarantees
that restricted users have a location assigned. That is, if a user should be restricted, but does not have an assigned
location, they can’t see anything. This is to prevent users from obtaining full access in the event that their location is
deleted or improperly assigned.

The other component of this is uitabs. The menu bar and the sidebar on HQ are composed of a bunch of links and
names, essentially. We run the url for each of these links against the same check that the middleware uses to see if it
should be visible to the user. In this way, they only see menu and sidebar links that are accessible.

To mark a view as location safe, you apply the @location_safe decorator to it. This can be applied directly to view
functions, view classes, HQ report classes, or tastypie resources (see implentation and existing usages for examples).

UCR and Report Builder reports will be automatically marked as location safe if the report contains a location choice
provider. This is done using the conditionally_location_safe decorator, which is provided with a function that
in this case checks that the report has at least one location choice provider.

When marking a view as location safe, you must also check for restricted users by using either request.
can_access_all_locations or user.has_permission(domain, 'access_all_locations') and limit the
data returned accordingly.

You should create a user who is restricted and click through the desired workflow to make sure it still makes sense,
there could be for instance, ajax requests that must also be protected, or links to features the user shouldn’t see.

76 Chapter 18. Locations

CHAPTER

NINETEEN

REPORTING

A report is
a logical grouping of indicators with common config options (filters etc)

The way reports are produced in CommCare is still evolving so there are a number of different frameworks and methods
for generating reports. Some of these are legacy frameworks and should not be used for any future reports.

19.1 Recommended approaches for building reports

Things to keep in mind:

• report API

• sqlagg

• couchdbkit-aggregate (legacy)

19.1.1 Example Custom Report Scaffolding

class MyBasicReport(GenericTabularReport, CustomProjectReport):
name = "My Basic Report"
slug = "my_basic_report"
fields = ('corehq.apps.reports.filters.dates.DatespanFilter',)

@property
def headers(self):

return DataTablesHeader(DataTablesColumn("Col A"),
DataTablesColumnGroup(

"Group 1",
DataTablesColumn("Col B"),
DataTablesColumn("Col C")),

DataTablesColumn("Col D"))

@property
def rows(self):

return [
['Row 1', 2, 3, 4],
['Row 2', 3, 2, 1]

]

77

https://github.com/dimagi/sql-agg
https://github.com/dimagi/couchdbkit-aggregate

CommCareHQ Documentation, Release 1.0

19.2 Hooking up reports to CommCare HQ

Custom reports can be configured in code or in the database. To configure custom reports in code follow the following
instructions.

First, you must add the app to HQ_APPS in settings.py. It must have an __init__.py and a models.py for django to
recognize it as an app.

Next, add a mapping for your domain(s) to the custom reports module root to the DOMAIN_MODULE_MAP variable
in settings.py.

Finally, add a mapping to your custom reports to __init__.py in your custom reports submodule:

from myproject import reports

CUSTOM_REPORTS = (
('Custom Reports', (

reports.MyCustomReport,
reports.AnotherCustomReport,

)),
)

19.3 Reporting on data stored in SQL

As described above there are various ways of getting reporting data into and SQL database. From there we can query
the data in a number of ways.

19.3.1 Extending the SqlData class

The SqlData class allows you to define how to query the data in a declarative manner by breaking down a query into
a number of components.

class corehq.apps.reports.sqlreport.SqlData(config=None)

property columns

Returns a list of Column objects. These are used to make up the from portion of the SQL query.

property distinct_on

Returns a list of column names to create the DISTINCT ON portion of the SQL query

property filter_values

Return a dict mapping the filter keys to actual values e.g. {“enddate”: date(2013, 1, 1)}

property filters

Returns a list of filter statements. Filters are instances of sqlagg.filters.SqlFilter. See the sqlagg.filters
module for a list of standard filters.

e.g. [EQ(‘date’, ‘enddate’)]

property group_by

Returns a list of ‘group by’ column names.

78 Chapter 19. Reporting

CommCareHQ Documentation, Release 1.0

property keys

The list of report keys (e.g. users) or None to just display all the data returned from the query. Each value
in this list should be a list of the same dimension as the ‘group_by’ list. If group_by is None then keys must
also be None.

These allow you to specify which rows you expect in the output data. Its main use is to add rows for keys
that don’t exist in the data.

e.g.
group_by = [‘region’, ‘sub_region’] keys = [[‘region1’, ‘sub1’], [‘region1’, ‘sub2’] . . .]

table_name = None

The name of the table to run the query against.

This approach means you don’t write any raw SQL. It also allows you to easily include or exclude columns, format col-
umn values and combine values from different query columns into a single report column (e.g. calculate percentages).

In cases where some columns may have different filter values e.g. males vs females, sqlagg will handle executing the
different queries and combining the results.

This class also implements the corehq.apps.reports.api.ReportDataSource.

See Report API and sqlagg for more info.

e.g.

class DemoReport(SqlTabularReport, CustomProjectReport):
name = "SQL Demo"
slug = "sql_demo"
fields = ('corehq.apps.reports.filters.dates.DatespanFilter',)

The columns to include the the 'group by' clause
group_by = ["user"]

The table to run the query against
table_name = "user_report_data"

@property
def filters(self):

return [
BETWEEN('date', 'startdate', 'enddate'),

]

@property
def filter_values(self):

return {
"startdate": self.datespan.startdate_param_utc,
"enddate": self.datespan.enddate_param_utc,
"male": 'M',
"female": 'F',

}

@property
def keys(self):

would normally be loaded from couch
return [["user1"], ["user2"], ['user3']]

(continues on next page)

19.3. Reporting on data stored in SQL 79

https://github.com/dimagi/sql-agg

CommCareHQ Documentation, Release 1.0

(continued from previous page)

@property
def columns(self):

return [
DatabaseColumn("Location", SimpleColumn("user_id"), format_fn=self.username),
DatabaseColumn("Males", CountColumn("gender"), filters=self.filters+[EQ(

→˓'gender', 'male')]),
DatabaseColumn("Females", CountColumn("gender"), filters=self.filters+[EQ(

→˓'gender', 'female')]),
AggregateColumn(

"C as percent of D",
self.calc_percentage,
[SumColumn("indicator_c"), SumColumn("indicator_d")],
format_fn=self.format_percent)

]

_usernames = {"user1": "Location1", "user2": "Location2", 'user3': "Location3"} #␣
→˓normally loaded from couch
def username(self, key):

return self._usernames[key]

def calc_percentage(num, denom):
if isinstance(num, Number) and isinstance(denom, Number):

if denom != 0:
return num * 100 / denom

else:
return 0

else:
return None

def format_percent(self, value):
return format_datatables_data("%d%%" % value, value)

19.4 Report API

Part of the evolution of the reporting frameworks has been the development of a report api. This is essentially just a
change in the architecture of reports to separate the data from the display. The data can be produced in various formats
but the most common is an list of dicts.

e.g.

data = [
{
'slug1': 'abc',
'slug2': 2

},
{
'slug1': 'def',
'slug2': 1

}
...

]

80 Chapter 19. Reporting

CommCareHQ Documentation, Release 1.0

This is implemented by creating a report data source class that extends corehq.apps.reports.api.
ReportDataSource and overriding the get_data() function.

class corehq.apps.reports.api.ReportDataSource(config=None)

get_data(start=None, limit=None)
Intention: Override

Parameters
slugs – List of slugs to return for each row. Return all values if slugs = None or [].

Returns
A list of dictionaries mapping slugs to values.

e.g. [{‘village’: ‘Mazu’, ‘births’: 30, ‘deaths’: 28},{. . . }]

slugs()

Intention: Override

Returns
A list of available slugs.

These data sources can then be used independently or the CommCare reporting user interface and can also be reused
for multiple use cases such as displaying the data in the CommCare UI as a table, displaying it in a map, making it
available via HTTP etc.

An extension of this base data source class is the corehq.apps.reports.sqlreport.SqlData class which simpli-
fies creating data sources that get data by running an SQL query. See section on SQL reporting for more info.

e.g.

class CustomReportDataSource(ReportDataSource):
def get_data(self):

startdate = self.config['start']
enddate = self.config['end']

...

return data

config = {'start': date(2013, 1, 1), 'end': date(2013, 5, 1)}
ds = CustomReportDataSource(config)
data = ds.get_data()

19.4. Report API 81

CommCareHQ Documentation, Release 1.0

82 Chapter 19. Reporting

CHAPTER

TWENTY

REPORTING: MAPS IN HQ

20.1 What is the “Maps Report”?

We now have map-based reports in HQ. The “maps report” is not really a report, in the sense that it does not query or
calculate any data on its own. Rather, it’s a generic front-end visualization tool that consumes data from some other
place. . . other places such as another (tabular) report, or case/form data (work in progress).

To create a map-based report, you must configure the map report template with specific parameters. These are:

• data_source – the backend data source which will power the report (required)

• display_config – customizations to the display/behavior of the map itself (optional, but suggested for anything
other than quick prototyping)

This is how this configuration actually takes place:

• subclass the map report to provide/generate the config parameters. You should not need to subclass any code
functionality. This is useful for making a more permanent map configuration, and when the configuration needs
to be dynamically generated based on other data or domain config (e.g., for CommTrack)

20.2 Orientation

Abstractly, the map report consumes a table of data from some source. Each row of the table is a geographical feature
(point or region). One column is identified as containing the geographical data for the feature. All other columns are
arbitrary attributes of that feature that can be visualized on the map. Another column may indicate the name of the
feature.

The map report contains, obviously, a map. Features are displayed on the map, and may be styled in a number of ways
based on feature attributes. The map also contains a legend generated for the current styling. Below the map is a table
showing the raw data. Clicking on a feature or its corresponding row in the table will open a detail popup. The columns
shown in the table and the detail popup can be customized.

Attribute data is generally treated as either being numeric data or enumerated data (i.e., belonging to a number of
discrete categories). Strings are inherently treated as enum data. Numeric data can be treated as enum data be specifying
thresholds: numbers will be mapped to enum ‘buckets’ between consecutive thresholds (e.g, thresholds of 10, 20 will
create enum categories: < 10, 10-20, > 20).

83

https://github.com/dimagi/commcare-hq/blob/8af9177910fa3ae5642a68d8085071e91c1356f6/corehq/apps/reports/standard/inspect.py#L685
https://github.com/dimagi/commcare-hq/blob/8af9177910fa3ae5642a68d8085071e91c1356f6/corehq/apps/reports/commtrack/maps.py#L7

CommCareHQ Documentation, Release 1.0

20.3 Styling

Different aspects of a feature’s marker on the map can be styled based on its attributes. Currently supported visualiza-
tions (you may see these referred to in the code as “display axes” or “display dimensions”) are:

• varying the size (numeric data only)

• varying the color/intensity (numeric data (color scale) or enum data (fixed color palette))

• selecting an icon (enum data only)

Size and color may be used concurrently, so one attribute could vary size while another varies the color. . . this is
useful when the size represents an absolute magnitude (e.g., # of pregnancies) while the color represents a ratio (%
with complications). Region features (as opposed to point features) only support varying color.

A particular configuration of visualizations (which attributes are mapped to which display axes, and associated styling
like scaling, colors, icons, thresholds, etc.) is called a metric. A map report can be configured with many different
metrics. The user selects one metric at a time for viewing. Metrics may not correspond to table columns one-to-one, as
a single column may be visualized multiple ways, or in combination with other columns, or not at all (shown in detail
popup only). If no metrics are specified, they will be auto-generated from best guesses based on the available columns
and data feeding the report.

There are several sample reports that comprehensively demo the potential styling options:

• Demo 1

• Demo 2

See Display Configuration

20.4 Data Sources

Set this config on the data_source property. It should be a dict with the following properties:

• geo_column – the column in the returned data that contains the geo point (default: "geo")

• adapter – which data adapter to use (one of the choices below)

• extra arguments specific to each data adapter

Note that any report filters in the map report are passed on verbatim to the backing data source.

One column of the data returned by the data source must be the geodata (in geo_column). For point features, this
can be in the format of a geopoint xform question (e.g, 42.366 -71.104). The geodata format for region features is
outside the scope of the document.

20.4.1 report

Retrieve data from a ReportDataSource (the abstract data provider of Simon’s new reporting framework – see Report
API)

Parameters:

• report – fully qualified name of ReportDataSource class

• report_params – dict of static config parameters for the ReportDataSource (optional)

84 Chapter 20. Reporting: Maps in HQ

https://www.commcarehq.org/a/commtrack-public-demo/reports/maps_demo/
https://www.commcarehq.org/a/commtrack-public-demo/reports/maps_demo2/

CommCareHQ Documentation, Release 1.0

20.4.2 legacyreport

Retrieve data from a GenericTabularReport which has not yet been refactored to use Simon’s new framework. Not
ideal and should only be used for backwards compatibility. Tabular reports tend to return pre-formatted data, while the
maps report works best with raw data (for example, it won’t know 4% or 30 mg are numeric data, and will instead treat
them as text enum values). Read more.

Parameters:

• report – fully qualified name of tabular report view class (descends from GenericTabularReport)

• report_params – dict of static config parameters for the ReportDataSource (optional)

20.4.3 case

Pull case data similar to the Case List.

(In the current implementation, you must use the same report filters as on the regular Case List report)

Parameters:

• geo_fetch – a mapping of case types to directives of how to pull geo data for a case of that type. Supported
directives:

– name of case property containing the geopoint data

– "link:xxx" where xxx is the case type of a linked case; the adapter will then serach that linked case for
geo-data based on the directive of the linked case type (not supported yet)

In the absence of any directive, the adapter will first search any linked Location record (not supported yet), then
try the gps case property.

20.4.4 csv and geojson

Retrieve static data from a csv or geojson file on the server (only useful for testing/demo– this powers the demo reports,
for example).

20.5 Display Configuration

Set this config on the display_config property. It should be a dict with the following properties:

(Whenever ‘column’ is mentioned, it refers to a column slug as returned by the data adapter)

All properties are optional. The map will attempt sensible defaults.
• name_column – column containing the name of the row; used as the header of the detail popup

• column_titles – a mapping of columns to display titles for each column

• detail_columns – a list of columns to display in the detail popup

• table_columns – a list of columns to display in the data table below the map

• enum_captions – display captions for enumerated values. A dict where each key is a column and each value
is another dict mapping enum values to display captions. These enum values reflect the results of any transfor-
mations from metrics (including _other, _null, and -).

20.5. Display Configuration 85

CommCareHQ Documentation, Release 1.0

• numeric_format – a mapping of columns to functions that apply the appropriate numerical formatting for that
column. Expressed as the body of a function that returns the formatted value (return statement required!). The
unformatted value is passed to the function as the variable x.

• detail_template – an underscore.js template to format the content of the detail popup

• metrics – define visualization metrics (see Styling). An array of metrics, where each metric is a dict like so:

– auto – column. Auto-generate a metric for this column with no additional manual input. Uses heuristics
to determine best presentation format.

OR

– title – metric title in sidebar (optional)

AND one of the following for each visualization property you want to control

– size (static) – set the size of the marker (radius in pixels)

– size (dynamic) – vary the size of the marker dynamically. A dict in the format:

∗ column – column whose data to vary by

∗ baseline – value that should correspond to a marker radius of 10px

∗ min – min marker radius (optional)

∗ max – max marker radius (optional)

– color (static) – set the marker color (css color value)

– color (dynamic) – vary the color of the marker dynamically. A dict in the format:

∗ column – column whose data to vary by

∗ categories – for enumerated data; a mapping of enum values to css color values. Mapping key may
also be one of these magic values:

· _other: a catch-all for any value not specified

· _null: matches rows whose value is blank; if absent, such rows will be hidden

∗ colorstops – for numeric data. Creates a sliding color scale. An array of colorstops, each of the
format [<value>, <css color>].

∗ thresholds – (optional) a helper to convert numerical data into enum data via “buckets”. Specify a
list of thresholds. Each bucket comprises a range from one threshold up to but not including the next
threshold. Values are mapped to the bucket whose range they lie in. The “name” (i.e., enum value)
of a bucket is its lower threshold. Values below the lowest threshold are mapped to a special bucket
called "-".

– icon (static) – set the marker icon (image url)

– icon (dynamic) – vary the icon of the marker dynamically. A dict in the format:

∗ column – column whose data to vary by

∗ categories – as in color, a mapping of enum values to icon urls

∗ thresholds – as in color

size and color may be combined (such as one column controlling size while another controls the color). icon
must be used on its own.

For date columns, any relevant number in the above config (thresholds, colorstops, etc.) may be replaced
with a date (in ISO format).

86 Chapter 20. Reporting: Maps in HQ

CommCareHQ Documentation, Release 1.0

20.6 Raw vs. Formatted Data

Consider the difference between raw and formatted data. Numbers may be formatted for readability (12,345,678,
62.5%, 27 units); enums may be converted to human-friendly captions; null values may be represented as -- or n/a.
The maps report works best when it has the raw data and can perform these conversions itself. The main reason is so
that it may generate useful legends, which requires the ability to appropriately format values that may never appear in
the report data itself.

There are three scenarios of how a data source may provide data:

• (worst) only provide formatted data

Maps report cannot distinguish numbers from strings from nulls. Data visualizations will not be useful.

• (sub-optimal) provide both raw and formatted data (most likely via the legacyreport adapter)

Formatted data will be shown to the user, but maps report will not know how to format data for display in legends,
nor will it know all possible values for an enum field – only those that appear in the data.

• (best) provide raw data, and explicitly define enum lists and formatting functions in the report config

20.6. Raw vs. Formatted Data 87

CommCareHQ Documentation, Release 1.0

88 Chapter 20. Reporting: Maps in HQ

CHAPTER

TWENTYONE

EXPORTS

Docs in corehq/apps/export/README.md

89

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/export/README.md

CommCareHQ Documentation, Release 1.0

90 Chapter 21. Exports

CHAPTER

TWENTYTWO

CHANGE FEEDS

The following describes our approach to change feeds on HQ. For related content see this presentation on the topic
though be advised the presentation was last updated in 2015 and is somewhat out of date.

22.1 What they are

A change feed is modeled after the CouchDB _changes feed. It can be thought of as a real-time log of “changes” to
our database. Anything that creates such a log is called a “(change) publisher”.

Other processes can listen to a change feed and then do something with the results. Processes that listen to changes
are called “subscribers”. In the HQ codebase “subscribers” are referred to as “pillows” and most of the change feed
functionality is provided via the pillowtop module. This document refers to pillows and subscribers interchangeably.

Common use cases for change subscribers:

• ETL (our main use case)
– Saving docs to ElasticSearch

– Custom report tables

– UCR data sources

• Cache invalidation

22.2 Architecture

We use kafka as our primary back-end to facilitate change feeds. This allows us to decouple our subscribers from the
underlying source of changes so that they can be database-agnostic. For legacy reasons there are still change feeds that
run off of CouchDB’s _changes feed however these are in the process of being phased out.

22.2.1 Topics

Topics are a kafka concept that are used to create logical groups (or “topics”) of data. In the HQ codebase we use
topics primarily as a 1:N mapping to HQ document classes (or doc_type s). Forms and cases currently have their
own topics, while everything else is lumped in to a “meta” topic. This allows certain pillows to subscribe to the exact
category of change/data they are interested in (e.g. a pillow that sends cases to elasticsearch would only subscribe to
the “cases” topic).

91

https://docs.google.com/presentation/d/1YPWUJbic87UYz3bqocJCsnYrnaEZkn8nCM2VZOXQRmg/edit
http://kafka.apache.org/

CommCareHQ Documentation, Release 1.0

22.2.2 Document Stores

Published changes are just “stubs” but do not contain the full data that was affected. Each change should be associated
with a “document store” which is an abstraction that represents a way to retrieve the document from its original database.
This allows the subscribers to retrieve the full document while not needing to have the underlying source hard-coded (so
that it can be changed). To add a new document store, you can use one of the existing subclasses of DocumentStore
or roll your own.

22.3 Publishing changes

Publishing changes is the act of putting them into kafka from somewhere else.

22.3.1 From Couch

Publishing changes from couch is easy since couch already has a great change feed implementation with the
_changes API. For any database that you want to publish changes from the steps are very simple. Just create
a ConstructedPillow with a CouchChangeFeed feed pointed at the database you wish to publish from and a
KafkaProcessor to publish the changes. There is a utility function (get_change_feed_pillow_for_db) which
creates this pillow object for you.

22.3.2 From SQL

Currently SQL-based change feeds are published from the app layer. Basically, you can just call a function that publishes
the change in a .save() function (or a post_save signal). See the functions in form_processors.change_publishers
and their usages for an example of how that’s done.

It is planned (though unclear on what timeline) to find an option to publish changes directly from SQL to kafka to avoid
race conditions and other issues with doing it at the app layer. However, this change can be rolled out independently at
any time in the future with (hopefully) zero impact to change subscribers.

22.3.3 From anywhere else

There is not yet a need/precedent for publishing changes from anywhere else, but it can always be done at the app layer.

22.4 Subscribing to changes

It is recommended that all new change subscribers be instances (or subclasses) of ConstructedPillow. You can use
the KafkaChangeFeed object as the change provider for that pillow, and configure it to subscribe to one or more topics.
Look at usages of the ConstructedPillow class for examples on how this is done.

92 Chapter 22. Change Feeds

https://github.com/dimagi/commcare-hq/blob/master/corehq/form_processor/change_publishers.py

CommCareHQ Documentation, Release 1.0

22.5 Porting a new pillow

Porting a new pillow to kafka will typically involve the following steps. Depending on the data being published, some
of these may be able to be skipped (e.g. if there is already a publisher for the source data, then that can be skipped).

1. Setup a publisher, following the instructions above.

2. Setup a subscriber, following the instructions above.

3. For non-couch-based data sources, you must setup a DocumentStore class for the pillow, and include it in the
published feed.

4. For any pillows that require additional bootstrap logic (e.g. setting up UCR data tables or bootstrapping elastic-
search indexes) this must be hooked up manually.

22.6 Mapping the above to CommCare-specific details

22.6.1 Topics

The list of topics used by CommCare can be found in corehq.apps.change_feed.topics.py. For most data models there
is a 1:1 relationship between the data model and the model in CommCare HQ, with the exceptions of forms and cases,
which each have two topics - one for the legacy CouchDB-based forms/cases, and one for the SQL-based models
(suffixed by -sql).

22.6.2 Contents of the feed

Generally the contents of each change in the feed will documents that mirror the ChangeMeta class in pillow-
top.feed.interface, in the form of a serialized JSON dictionary. An example once deserialized might look something
like this:

{
"document_id": "95dece4cd7c945ec83c6d2dd04d38673",
"data_source_type": "sql",
"data_source_name": "form-sql",
"document_type": "XFormInstance",
"document_subtype": "http://commcarehq.org/case",
"domain": "dimagi",
"is_deletion": false,
"document_rev": null,
"publish_timestamp": "2019-09-18T14:31:01.930921Z",
"attempts": 0

}

Details on how to interpret these can be found in the comments of the linked class.

The document_id, along with the document_type and data_source_type should be sufficient to retrieve the underlying
raw document out from the feed from the Document Store (see above).

22.5. Porting a new pillow 93

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/change_feed/topics.py#L9
https://github.com/dimagi/commcare-hq/blob/master/corehq/ex-submodules/pillowtop/feed/interface.py#L9
https://github.com/dimagi/commcare-hq/blob/master/corehq/ex-submodules/pillowtop/feed/interface.py#L9

CommCareHQ Documentation, Release 1.0

94 Chapter 22. Change Feeds

CHAPTER

TWENTYTHREE

PILLOWS

23.1 Overview

23.1.1 What are pillows

Pillows are a component of the publisher/subscriber design pattern that is used for asynchronous communication.

A pillow subscribes to a change feed, and when changes are received, performs specific operations related to that
change.

23.1.2 Why do we need pillows

In CommCare HQ, pillows are primarily used to update secondary databases like Elasticsearch and User Configurable
Reports (UCRs). Examples of other use cases are invalidating cache or checking if alerts need to be sent.

23.1.3 How do pillows receive changes

We use Kafka as our message queue, which allows producers to publish changes to the queue, and consumers (i.e.
pillows) to listen for and process those changes.

Kafka uses _topics_ to organize related changes, and pillows can listen for changes to one or more specific topics.

23.1.4 Why the name

Pillows, as part of the pillowtop framework, were created by us to consume and process changes from the CouchDB
change feed. Our usage of pillows has since expanded beyond CouchDB.

23.2 Deconstructing a Pillow

All pillows inherit from the ConstructedPillow class. A pillow consists of a few parts:

1. Change Feed

2. Checkpoint

3. Processor(s)

4. Change Event Handler

95

CommCareHQ Documentation, Release 1.0

23.2.1 Change Feed

The brief overview is that a change feed publishes changes which a pillow can subscribe to. When setting up a pillow,
an instance of a ChangeFeed class is created and configured to only contain changes the pillow cares about.

For more information about change feeds, see Change Feeds.

23.2.2 Checkpoint

The checkpoint is a json field that tells processor where to start the change feed.

23.2.3 Processors

A processor is a method that operates on the incoming change. Historically, we had one processor per pillow, however
we have since shifted to favor multiple processors for each pillow. This way, all processors can operate on the change
which ensures all operations relevant for a change happen within relatively the same time window.

When creating a processor you should be aware of how much time it will take to process the record. A useful baseline
is:

86400 seconds per day / # of expected changes per day = how long your processor should take

Note that it should be faster than this as most changes will come in at once instead of evenly distributed throughout the
day.

23.2.4 Change Event Handler

This fires after each change has been processed. The main use case is to save the checkpoint to the database.

23.3 Error Handling

23.3.1 Errors

Pillows can fail to process a change for a number of reasons. The most common causes of pillow errors are a code bug,
or a failure in a dependent service (e.g., attempting to save a change to Elasticsearch but it is unreachable).

Errors encountered in processors are handled by creating an instance of the PillowError database model.

23.3.2 Retries

The run_pillow_retry_queue command is configured to run continuously in a celery queue, and looks for new Pillow-
Error objects to retry. A pillow has the option to disable retrying errors via the retry_errors property.

If the related pillow reads from a Kafka change feed, the change associated with the error is re-published into Kafka.
However if it reads from a Couch change feed, the pillow’s processor is called directly with the change passed in. In
both cases, the PillowError is deleted, a new one will be created if it fails again.

96 Chapter 23. Pillows

CommCareHQ Documentation, Release 1.0

23.4 Monitoring

There are several datadog metrics with the prefix commcare.change_feed that can be helpful for monitoring pillows.
Generally these metrics will have tags for pillow name, topic, and partition to filter on.

Metric (not including comm-
care.change_feed)

Description

change_lag The current time - when the last change processed was put into the
queue

changes.count Number of changes processed
changes.success Number of changes processed successfully
changes.exceptions Number of changes processed with an exception
processor.timing Time spent in processing a document. Different tags for ex-

tract/transform/load steps.
processed_offsets Latest offset that has been processed by the pillow
current_offsets The current offsets of each partition in kafka (useful for math in dash-

boards)
need_processing current_offsets - processed_offsets

Generally when planning for pillows, you should:
• Minimize change_lag

– ensures changes are processed in a reasonable time (e.g., up to date reports for users)

• Minimize changes.exceptions
– ensures consistency across application (e.g., secondary databases contain accurate data)

– more exceptions mean more load since they will be reprocessed at a later time

• Minimize number of pillows running
– minimizes server resources required

The ideal setup would have 1 pillow with no exceptions and 0 second lag.

23.5 Troubleshooting

23.5.1 A pillow is falling behind

Otherwise known as “pillow lag”, a pillow can fall behind for a few reasons:

1. The processor is too slow for the number of changes that are coming in.

2. There was an issue with the change feed that caused the checkpoint to be “rewound”.

3. A processor continues to fail so changes are re-queued and processed again later.

Lag is inherent to asynchronous change processing, so the question is what amount of lag is acceptable for users.

23.4. Monitoring 97

CommCareHQ Documentation, Release 1.0

Optimizing a processor

To solve #1 you should use any monitors that have been set up to attempt to pinpoint the issue. comm-
care.change_feed.processor.timing can help determine what processors/pillows are the root cause of slow processing.

If this is a UCR pillow use the profile_data_source management command to profile the expensive data sources.

Parallel Processors

To scale pillows horizontally do the following:

1. Look for what pillows are behind. This can be found in the change feed dashboard or the hq admin system info
page.

2. Ensure you have enough resources on the pillow server to scale the pillows. This can be found through datadog.

3. Decide what topics need to have added partitions in kafka. There is no way to scale a couch pillow horizontally.
Removing partitions isn’t straightforward, so you should attempt scaling in small increments. Also make sure
pillows are able to split partitions easily by using powers of 2.

4. Run ./manage.py add_kafka_partition <topic> <number partitions to have>

5. In the commcare-cloud repo environments/<env>/app-processes.yml file change num_processes to the pillows
you want to scale.

6. On the next deploy multiple processes will be used when starting pillows

Note that pillows will automatically divide up partitions based on the number of partitions and the number of processes
for the pillow. It doesn’t have to be one to one, and you don’t have to specify the mapping manually. That means you
can create more partitions than you need without changing the number of pillow processes and just restart pillows for
the change to take effect. Later you can just change the number of processes without touching the number of partitions,
and and just update the supervisor conf and restarting pillows for the change to take effect.

The UCR pillows also have options to split the pillow into multiple. They include ucr_divsion, include_ucrs and
exclude_ucrs. Look to the pillow code for more information on these.

Rewound Checkpoint

Occasionally checkpoints will be “rewound” to a previous state causing pillows to process changes that have already
been processed. This usually happens when a couch node fails over to another. If this occurs, stop the pillow, wait
for confirmation that the couch nodes are up, and fix the checkpoint using: ./manage.py fix_checkpoint_after_rewind
<pillow_name>

Many pillow exceptions

commcare.change_feed.changes.exceptions has tag exception_type that reports the name and path of the exception
encountered. These exceptions could be from coding errors or from infrastructure issues. If they are from infrastructure
issues (e.g. ES timeouts) some solutions could be:

• Scale ES cluster (more nodes, shards, etc)

• Reduce number of pillow processes that are writing to ES

• Reduce other usages of ES if possible (e.g. if some custom code relies on ES, could it use UCRs, https://github.
com/dimagi/commcare-hq/pull/26241)

98 Chapter 23. Pillows

https://github.com/dimagi/commcare-hq/pull/26241
https://github.com/dimagi/commcare-hq/pull/26241

CommCareHQ Documentation, Release 1.0

23.5.2 Problem with checkpoint for pillow name: First available topic offset for topic
is num1 but needed num2

This happens when the earliest checkpoint that kafka knows about for a topic is after the checkpoint the pillow wants
to start at. This often happens if a pillow has been stopped for a month and has not been removed from the settings.

To fix this you should verify that the pillow is no longer needed in the environment. If it isn’t, you can delete the
checkpoint and re-deploy. This should eventually be followed up by removing the pillow from the settings.

If the pillow is needed and should be running you’re in a bit of a pickle. This means that the pillow is not able to get
the required document ids from kafka. It also won’t be clear what documents the pillows has and has not processed.
To fix this the safest thing will be to force the pillow to go through all relevant docs. Once this process is started you
can move the checkpoint for that pillow to the most recent offset for its topic.

23.6 Pillows

corehq.pillows.case.get_case_pillow(pillow_id='case-pillow', ucr_division=None, include_ucrs=None,
exclude_ucrs=None, num_processes=1, process_num=0,
ucr_configs=None, skip_ucr=False, processor_chunk_size=10,
topics=None, dedicated_migration_process=False, **kwargs)

Return a pillow that processes cases. The processors include, UCR and elastic processors

Processors:
• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor (disabled when

skip_ucr=True)

• pillowtop.processors.elastic.BulkElasticProcessor

• corehq.pillows.case_search.get_case_search_processor()

• corehq.messaging.pillow.CaseMessagingSyncProcessor

corehq.pillows.xform.get_xform_pillow(pillow_id='xform-pillow', ucr_division=None, include_ucrs=None,
exclude_ucrs=None, num_processes=1, process_num=0,
ucr_configs=None, skip_ucr=False, processor_chunk_size=10,
topics=None, dedicated_migration_process=False, **kwargs)

Generic XForm change processor

Processors:
• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor

– (disabled when skip_ucr=True)

• pillowtop.processors.elastic.BulkElasticProcessor

• corehq.pillows.user.UnknownUsersProcessor

– (disabled when RUN_UNKNOWN_USER_PILLOW=False)

• pillowtop.form.FormSubmissionMetadataTrackerProcessor

– (disabled when RUN_FORM_META_PILLOW=False)

• corehq.apps.data_interfaces.pillow.CaseDeduplicationPillow`

corehq.pillows.case.get_case_to_elasticsearch_pillow(pillow_id='CaseToElasticsearchPillow',
num_processes=1, process_num=0, **kwargs)

Return a pillow that processes cases to Elasticsearch.

23.6. Pillows 99

CommCareHQ Documentation, Release 1.0

Processors:
• pillowtop.processors.elastic.ElasticProcessor

corehq.pillows.xform.get_xform_to_elasticsearch_pillow(pillow_id='XFormToElasticsearchPillow',
num_processes=1, process_num=0,
**kwargs)

XForm change processor that sends form data to Elasticsearch

Processors:
• pillowtop.processors.elastic.ElasticProcessor

corehq.pillows.user.get_user_pillow(pillow_id='user-pillow', num_processes=1,
dedicated_migration_process=False, process_num=0,
skip_ucr=False, processor_chunk_size=10, **kwargs)

Processes users and sends them to ES and UCRs.

Processors:
• pillowtop.processors.elastic.BulkElasticProcessor()

• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor()

corehq.pillows.user.get_user_pillow_old(pillow_id='UserPillow', num_processes=1, process_num=0,
**kwargs)

Processes users and sends them to ES.

Processors:
• pillowtop.processors.elastic.ElasticProcessor()

corehq.apps.userreports.pillow.get_location_pillow(pillow_id='location-ucr-pillow',
include_ucrs=None, num_processes=1,
process_num=0, ucr_configs=None, **kwargs)

Processes updates to locations for UCR

Note this is only applicable if a domain on the environment has LOCATIONS_IN_UCR flag enabled.

Processors:
• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor()

corehq.pillows.groups_to_user.get_group_pillow(pillow_id='group-pillow', num_processes=1,
process_num=0, **kwargs)

Group pillow

Processors:
• corehq.pillows.groups_to_user.GroupsToUsersProcessor

• corehq.pillows.group.get_group_to_elasticsearch_processor()

corehq.pillows.group.get_group_pillow_old(pillow_id='GroupPillow', num_processes=1,
process_num=0, **kwargs)

Group pillow (old). Sends Group data to Elasticsearch

Processors:
• corehq.pillows.group.get_group_to_elasticsearch_processor

100 Chapter 23. Pillows

CommCareHQ Documentation, Release 1.0

corehq.pillows.groups_to_user.get_group_to_user_pillow(pillow_id='GroupToUserPillow',
num_processes=1, process_num=0,
**kwargs)

Group pillow that updates user data in Elasticsearch with group membership

Processors:
• corehq.pillows.groups_to_user.GroupsToUsersProcessor

corehq.pillows.ledger.get_ledger_to_elasticsearch_pillow(pillow_id='LedgerToElasticsearchPillow',
num_processes=1, process_num=0,
**kwargs)

Ledger pillow

Note that this pillow’s id references Elasticsearch, but it no longer saves to ES. It has been kept to keep the
checkpoint consistent, and can be changed at any time.

Processors:
• corehq.pillows.ledger.LedgerProcessor

corehq.pillows.domain.get_domain_kafka_to_elasticsearch_pillow(pillow_id='KafkaDomainPillow',
num_processes=1,
process_num=0, **kwargs)

Domain pillow to replicate documents to ES

Processors:
• pillowtop.processors.elastic.ElasticProcessor

corehq.pillows.sms.get_sql_sms_pillow(pillow_id='SqlSMSPillow', num_processes=1, process_num=0,
processor_chunk_size=10, **kwargs)

SMS Pillow

Processors:
• pillowtop.processors.elastic.BulkElasticProcessor

corehq.apps.userreports.pillow.get_kafka_ucr_pillow(pillow_id='kafka-ucr-main', ucr_division=None,
include_ucrs=None, exclude_ucrs=None,
topics=None, num_processes=1,
process_num=0,
dedicated_migration_process=False,
processor_chunk_size=10, **kwargs)

UCR pillow that reads from all Kafka topics and writes data into the UCR database tables.

Processors:
• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor

corehq.apps.userreports.pillow.get_kafka_ucr_static_pillow(pillow_id='kafka-ucr-static',
ucr_division=None,
include_ucrs=None,
exclude_ucrs=None, topics=None,
num_processes=1, process_num=0,
dedicated_migration_process=False,
processor_chunk_size=10, **kwargs)

UCR pillow that reads from all Kafka topics and writes data into the UCR database tables.

Only processes static UCR datasources (configuration lives in the codebase instead of the database).

23.6. Pillows 101

CommCareHQ Documentation, Release 1.0

Processors:
• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor

corehq.pillows.synclog.get_user_sync_history_pillow(pillow_id='UpdateUserSyncHistoryPillow',
num_processes=1, process_num=0, **kwargs)

Synclog pillow

Processors:
• corehq.pillows.synclog.UserSyncHistoryProcessor()

corehq.pillows.application.get_app_to_elasticsearch_pillow(pillow_id='ApplicationToElasticsearchPillow',
num_processes=1, process_num=0,
**kwargs)

App pillow

Processors:
• pillowtop.processors.elastic.BulkElasticProcessor

corehq.pillows.app_submission_tracker.get_form_submission_metadata_tracker_pillow(pillow_id='FormSubmissionMetadataTrackerPillow',
num_processes=1,
pro-
cess_num=0,
**kwargs)

This gets a pillow which iterates through all forms and marks the corresponding app as having submissions.

Processors:
• pillowtop.processors.form.FormSubmissionMetadataTrackerProcessor

corehq.pillows.user.get_unknown_users_pillow(pillow_id='unknown-users-pillow', num_processes=1,
process_num=0, **kwargs)

This pillow adds users from xform submissions that come in to the User Index if they don’t exist in HQ

Processors:
• corehq.pillows.user.UnknownUsersProcessor

corehq.messaging.pillow.get_case_messaging_sync_pillow(pillow_id='case_messaging_sync_pillow',
topics=None, num_processes=1,
process_num=0, processor_chunk_size=10,
**kwargs)

Pillow for synchronizing messaging data with case data.

Processors:
• corehq.messaging.pillow.CaseMessagingSyncProcessor

corehq.pillows.case_search.get_case_search_to_elasticsearch_pillow(pillow_id='CaseSearchToElasticsearchPillow',
num_processes=1,
process_num=0, **kwargs)

Populates the case search Elasticsearch index.

Processors:
• corehq.pillows.case_search.CaseSearchPillowProcessor

corehq.pillows.cacheinvalidate._get_cache_invalidation_pillow(pillow_id, couch_db,
couch_filter=None)

Pillow that listens to changes and invalidates the cache whether it’s a single doc being cached or a view.

102 Chapter 23. Pillows

CommCareHQ Documentation, Release 1.0

Processors:
• corehq.pillows.cache_invalidate_pillow.CacheInvalidateProcessor

corehq.apps.change_feed.pillow.get_change_feed_pillow_for_db(pillow_id, couch_db,
default_topic=None)

Generic pillow for inserting Couch documents into Kafka.

Reads from:
• CouchDB

Writes to:
• Kafka

23.7 Processors

class corehq.pillows.user.UnknownUsersProcessor

Monitors forms for user_ids we don’t know about and creates an entry in ES for the user.

Reads from:
• Kafka topics: form-sql, form

• XForm data source

Writes to:
• UserES index

class corehq.apps.change_feed.pillow.KafkaProcessor(data_source_type, data_source_name,
default_topic)

Generic processor for CouchDB changes to put those changes in a kafka topic

Reads from:
• CouchDB change feed

Writes to:
• Specified kafka topic

• DeletedCouchDoc SQL table

class corehq.pillows.groups_to_user.GroupsToUsersProcessor

When a group changes, this updates the user doc in UserES

Reads from:
• Kafka topics: group

• Group data source (CouchDB)

Writes to:
• UserES index

corehq.pillows.group.get_group_to_elasticsearch_processor()

Inserts group changes into ES

Reads from:
• Kafka topics: group

23.7. Processors 103

CommCareHQ Documentation, Release 1.0

• Group data source (CouchDB)

Writes to:
• GroupES index

class corehq.pillows.ledger.LedgerProcessor

Updates ledger section and entry combinations (exports), daily consumption and case location ids

Reads from:
• Kafka topics: ledger

• Ledger data source

Writes to:
• LedgerSectionEntry postgres table

• Ledger data source

class corehq.pillows.cacheinvalidate.CacheInvalidateProcessor

Invalidates cached CouchDB documents

Reads from:
• CouchDB

Writes to:
• Redis

class corehq.pillows.synclog.UserSyncHistoryProcessor

Updates the user document with reporting metadata when a user syncs

Note when USER_REPORTING_METADATA_BATCH_ENABLED is True that this is written to a postgres
table. Entries in that table are then batched and processed separately.

Reads from:
• CouchDB (user)

• SynclogSQL table

Writes to:
• CouchDB (user) (when batch processing disabled) (default)

• UserReportingMetadataStaging (SQL) (when batch processing enabled)

class pillowtop.processors.form.FormSubmissionMetadataTrackerProcessor

Updates the user document with reporting metadata when a user submits a form

Also marks the application as having submissions.

Note when USER_REPORTING_METADATA_BATCH_ENABLED is True that this is written to a postgres
table. Entries in that table are then batched and processed separately

Reads from:
• CouchDB (user and app)

• XForm data source

Writes to:
• CouchDB (app)

104 Chapter 23. Pillows

CommCareHQ Documentation, Release 1.0

• CouchDB (user) (when batch processing disabled) (default)

• UserReportingMetadataStaging (SQL) (when batch processing enabled)

class corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor(table_manager)
Generic processor for UCR.

Reads from:
• SQLLocation

• Form data source

• Case data source

Writes to:
• UCR database

class pillowtop.processors.elastic.ElasticProcessor(adapter, doc_filter_fn=None,
change_filter_fn=None)

Generic processor to transform documents and insert into ES.

Processes one document at a time.

Reads from:
• Usually Couch

• Sometimes SQL

Writes to:
• ES

class pillowtop.processors.elastic.BulkElasticProcessor(adapter, doc_filter_fn=None,
change_filter_fn=None)

Generic processor to transform documents and insert into ES.

Processes one “chunk” of changes at a time (chunk size specified by pillow).

Reads from:
• Usually Couch

• Sometimes SQL

Writes to:
• ES

corehq.pillows.case_search.get_case_search_processor()

Case Search

Reads from:
• Case data source

Writes to:
• Case Search ES index

class corehq.messaging.pillow.CaseMessagingSyncProcessor

Reads from:
• Case data source

23.7. Processors 105

CommCareHQ Documentation, Release 1.0

• Update Rules

Writes to:
• PhoneNumber

• Runs rules for SMS (can be many different things)

106 Chapter 23. Pillows

CHAPTER

TWENTYFOUR

MONITORING EMAIL EVENTS WITH AMAZON SES

If you are using Amazon SES as your email provider (through SMTP), you can monitor what happens to emails sent
through commcare’s messaging features (broadcasts, reminders, etc).

We use Amazon’s Simple Notification System to send callbacks to the /log_email_event endpoint.

1. Add SES_CONFIGURATION_SET to localsettings. Call this something memorable e.g. production-email-
events. You’ll use this name later. Deploy localsettings, and restart services (this needs to be done before the
next steps). Also add a SNS_EMAIL_EVENT_SECRET, which should be treated like a password, and should be
environment specific.

2. Create an SNS Topic here https://console.aws.amazon.com/sns/v3/home?region=us-east-1#/topics .

3. Add a subscription which points to https://{HQ_ADDRESS}/log_email_event/{SNS_EMAIL_EVENT_SECRET}.
Where the secret you created in step 1 should be added at the end of the address. This should automatically get
confirmed. If it doesn’t, ensure there is no firewall or something else blocking access to this endpoint.

4. Create an SES Configuration Set, with the name you created in step 1.

5. Add the SNS topic you created in step 2 as the desination for this configuration step. Select the event types you
want - we currently support Send, Delivery, and Bounce.

6. Messages you send with the X-COMMCAREHQ-MESSAGE-ID and X-SES-CONFIGURATION-SET headers
should now receive notification updates. The X-COMMCAREHQ-MESSAGE-ID headers should include the ID
of a MessagingSubEvent.

107

https://console.aws.amazon.com/sns/v3/home?region=us-east-1#/topics

CommCareHQ Documentation, Release 1.0

108 Chapter 24. Monitoring Email Events with Amazon SES

CHAPTER

TWENTYFIVE

USER CONFIGURABLE REPORTING

An overview of the design, API and data structures used here.

The docs on reporting, pillows, and change feeds, are useful background.

• Data Flow

• Data Sources

– Data Source Filtering

∗ Filter type overview

∗ Expressions

∗ JSON snippets for expressions

· Constant Expression

· Property Name Expression

· Property Path Expression

· Jsonpath Expression

· Conditional Expression

· Switch Expression

· Coalesce Expression

· Array Index Expression

· Split String Expression

· Iterator Expression

· Base iteration number expressions

· Related document expressions

· Ancestor location expression

· Nested expressions

· Dict expressions

· “Add Days” expressions

· “Add Hours” expressions

· “Add Months” expressions

109

https://commcare-hq.readthedocs.io/reporting.html
https://commcare-hq.readthedocs.io/pillows.html
https://commcare-hq.readthedocs.io/change_feeds.html

CommCareHQ Documentation, Release 1.0

· “Diff Days” expressions

· “Month Start Date” and “Month End Date” expressions

· “Evaluator” expression

· ‘Get Case Sharing Groups’ expression

· ‘Get Reporting Groups’ expression

· Filter, Sort, Map and Reduce Expressions

· map_items Expression

· filter_items Expression

· sort_items Expression

· reduce_items Expression

· flatten expression

· Named Expressions

∗ Boolean Expression Filters

· Operators

∗ Compound filters

· “And” Filters

· “Or” Filters

· “Not” Filters

∗ Practical Examples

– Indicators

∗ Indicator Properties

∗ Indicator types

· Boolean indicators

· Expression indicators

· Choice list indicators

· Ledger Balance Indicators

∗ Practical notes for creating indicators

· Fractions

– Saving Multiple Rows per Case/Form

– Data Cleaning and Validation

• Report Configurations

– Samples

– Report Filters

∗ Numeric Filters

∗ Date filters

110 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

∗ Quarter filters

∗ Pre-Filters

∗ Dynamic choice lists

· Choice providers

∗ Choice lists

∗ Drilldown by Location

∗ Internationalization

– Report Columns

∗ Field columns

∗ Percent columns

· Formats

∗ AggregateDateColumn

∗ IntegerBucketsColumn

∗ SumWhenColumn and SumWhenTemplateColumn

∗ Expanded Columns

∗ Expression columns

∗ The “aggregation” column property

· Column IDs

∗ Calculating Column Totals

∗ Internationalization

– Aggregation

∗ No aggregation

∗ Aggregate by ‘username’ column

∗ Aggregate by two columns

– Transforms

∗ Translations and arbitrary mappings

∗ Displaying Readable User Name (instead of user ID)

∗ Displaying username instead of user ID

∗ Displaying username minus @domain.commcarehq.org instead of user ID

∗ Displaying owner name instead of owner ID

∗ Displaying month name instead of month index

∗ Rounding decimals

∗ Generic number formatting

· Round to the nearest whole number

· Rich text formatting with Markdown

111

CommCareHQ Documentation, Release 1.0

· Always round to 3 decimal places

∗ Date formatting

∗ Converting an ethiopian date string to a gregorian date

∗ Converting a gregorian date string to an ethiopian date

– Charts

∗ Pie charts

∗ Aggregate multibar charts

∗ Multibar charts

– Sort Expression

– Distinct On

∗ Pick distinct by a single column

∗ Pick distinct result based on two columns

• Mobile UCR

– Filters

∗ Custom Calendar Month

• Export

– Export example

• Practical Notes

– Getting Started

– Static data sources

– Static configurable reports

– Custom configurable reports

– Extending User Configurable Reports

– Scaling UCR

∗ Profiling data sources

∗ Faster Reporting

∗ Asynchronous Indicators

– Inspecting database tables

112 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

25.1 Data Flow

Reporting is handled in multiple stages. Here is the basic workflow.

Raw data (form or case) → [Data source config] → Row in database table → [Report config] → Report in HQ

Both the data source config and report config are JSON documents that live in the database. The data source config
determines how raw data (forms and cases) gets mapped to rows in an intermediary table, while the report config(s)
determine how that report table gets turned into an interactive report in the UI.

A UCR table is created when a new data source is created. The table’s structure is updated whenever the UCR is
“rebuilt”, which happens when the data source config is edited. Rebuilds can also be kicked off manually via either
rebuild_indicator_table or the UI. Rebuilding happens asynchronously. Data in the table is refreshed continu-
ously by pillows.

25.2 Data Sources

Each data source configuration maps a filtered set of the raw data to indicators. A data source configuration consists of
two primary sections:

1. A filter that determines whether the data is relevant for the data source

2. A list of indicators in that data source

In addition to these properties there are a number of relatively self-explanatory fields on a data source such as the
table_id and display_name, and a few more nuanced ones. The full list of available fields is summarized in the
following table:

Field Description
filter Determines whether the data is relevant for the data source
indicators List of indicators to save
table_id A unique ID for the table
display_name A display name for the table that shows up in UIs
base_item_expression Used for making tables off of repeat or list data
named_expressions A list of named expressions that can be referenced in other filters and indicators
named_filters A list of named filters that can be referenced in other filters and indicators

25.2.1 Data Source Filtering

When setting up a data source configuration, filtering defines what data applies to a given set of indicators. Some
example uses of filtering on a data source include:

• Restricting the data by document type (e.g. cases or forms). This is a built-in filter.

• Limiting the data to a particular case or form type

• Excluding demo user data

• Excluding closed cases

• Only showing data that meets a domain-specific condition (e.g. pregnancy cases opened for women over 30 years
of age)

25.1. Data Flow 113

CommCareHQ Documentation, Release 1.0

Filter type overview

There are currently four supported filter types. However, these can be used together to produce arbitrarily complicated
expressions.

Filter Type Description
boolean_expression A expression / logic statement (more below)
and An “and” of other filters - true if all are true
or An “or” of other filters - true if any are true
not A “not” or inverse expression on a filter

To understand the boolean_expression type, we must first explain expressions.

Expressions

An expression is a way of representing a set of operations that should return a single value. Expressions can basically
be thought of as functions that take in a document and return a value:

Expression: function(document) → value

In normal math/python notation, the following are all valid expressions on a doc (which is presumed to be a dict
object:

• "hello"

• 7

• doc["name"]

• doc["child"]["age"]

• doc["age"] < 21

• "legal" if doc["age"] > 21 else "underage"

In user configurable reports the following expression types are currently supported (note that this can and likely will
be extended in the future):

114 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Expres-
sion
Type

Description Example

identity Just returns whatever is passed in doc
constant A constant "hello", 4, 2014-12-20
prop-
erty_name

A reference to the property in a document doc["name"]

prop-
erty_path

A nested reference to a property in a document doc["child"]["age"]

condi-
tional

An if/else expression "legal" if doc["age"] > 21
else "minor"

switch A switch statement if doc["age"] == 21: "legal"
elif doc["age"] == 60:
"senior" else: ...

ar-
ray_index

An index into an array doc[1]

split_string Splitting a string and grabbing a specific element from it by
index

doc["foobar"].split(' ')[0]

iterator Combine multiple expressions into a list [doc.name, doc.age, doc.
gender]

re-
lated_doc

A way to reference something in another document form.case.owner_id

root_doc A way to reference the root document explicitly (only needed
when making a data source from repeat/child data)

repeat.parent.name

ances-
tor_location

A way to retrieve the ancestor of a particular type from a
location

nested A way to chain any two expressions together f1(f2(doc))
dict A way to emit a dictionary of key/value pairs {"name": "test", "value":

f(doc)}
add_days A way to add days to a date my_date + timedelta(days=15)
add_monthsA way to add months to a date my_date + relative

delta(months=15)
month_start_dateFirst day in the month of a date 2015-01-20 -> 2015-01-01
month_end_dateLast day in the month of a date 2015-01-20 -> 2015-01-31
diff_days A way to get duration in days between two dates (to_date - from-date).days
evaluator A way to do arithmetic operations a + b*c / d
base_iteration_numberUsed with base_item_expression ` <#saving-multiple-

ro ws-per-caseform>`__ - a way to get the current iteration
number (starting from 0).

loop.index

Following expressions act on a list of objects or a list of lists (for e.g. on a repeat list) and return another list or value.
These expressions can be combined to do complex aggregations on list data.

25.2. Data Sources 115

CommCareHQ Documentation, Release 1.0

Expres-
sion
Type

Description Example

fil-
ter_items

Filter a list of items
to make a new list

[1, 2, 3, -1, -2, -3] -> [1, 2, 3] (filter numbers greater than zero)

map_items Map one list to an-
other list

[{'name': 'a', sex: 'f'}, {'name': 'b', gender: 'm'}] ->
['a', 'b'] (list of names from list of child data)

sort_items Sort a list based on
an expression

[{'name': 'a', age: 5}, {'name': 'b', age: 3}] ->
[{'name': 'b', age: 3}, {'name': 'a', age: 5}] (sort child
data by age)

re-
duce_items

Aggregate a list of
items into one value

sum on [1, 2, 3] -> 6

flatten Flatten multiple lists
of items into one list

[[1, 2], [4, 5]] -> [1, 2, 4, 5]

JSON snippets for expressions

Here are JSON snippets for the various expression types. Hopefully they are self-explanatory.

Constant Expression

class corehq.apps.userreports.expressions.specs.ConstantGetterSpec(_obj=None, **kwargs)
There are two formats for constant expressions. The simplified format is simply the constant itself. For example
"hello", or 5.

The complete format is as follows. This expression returns the constant "hello":

{
"type": "constant",
"constant": "hello"

}

Property Name Expression

class corehq.apps.userreports.expressions.specs.PropertyNameGetterSpec(_obj=None, **kwargs)
This expression returns doc["age"]:

{
"type": "property_name",
"property_name": "age"

}

An optional "datatype" attribute may be specified, which will attempt to cast the property to the given data
type. The options are “date”, “datetime”, “string”, “integer”, and “decimal”. If no datatype is specified, “string”
will be used.

116 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Property Path Expression

class corehq.apps.userreports.expressions.specs.PropertyPathGetterSpec(_obj=None, **kwargs)
This expression returns doc["child"]["age"]:

{
"type": "property_path",
"property_path": ["child", "age"]

}

An optional "datatype" attribute may be specified, which will attempt to cast the property to the given data
type. The options are “date”, “datetime”, “string”, “integer”, and “decimal”. If no datatype is specified, “string”
will be used.

Jsonpath Expression

class corehq.apps.userreports.expressions.specs.JsonpathExpressionSpec(_obj=None, **kwargs)
This will execute the jsonpath expression against the current doc and emit the result.

{
"type": "jsonpath",
"jsonpath": "form..case.name",

}

Given the following doc:

{
"form": {

"case": {"name": "a"},
"nested": {

"case": {"name": "b"},
},
"list": [

{"case": {"name": "c"}},
{

"nested": {
"case": {"name": "d"}

}
}

]
}

}

This above expression will evaluate to ["a", "b", "c", "d"]. Another example is form.list[0].case.
name which will evaluate to "c".

See also the jsonpath evaluator function.

For more information consult the following resources:

• Article by Stefan Goessner

• JSONPath expression syntax

• JSONPath Online Evaluator

25.2. Data Sources 117

https://goessner.net/articles/JsonPath/
https://goessner.net/articles/JsonPath/index.html#e2
https://jsonpath.com/

CommCareHQ Documentation, Release 1.0

Conditional Expression

class corehq.apps.userreports.expressions.specs.ConditionalExpressionSpec(_obj=None,
**kwargs)

This expression returns "legal" if doc["age"] > 21 else "underage":

{
"type": "conditional",
"test": {

"operator": "gt",
"expression": {

"type": "property_name",
"property_name": "age",
"datatype": "integer"

},
"type": "boolean_expression",
"property_value": 21

},
"expression_if_true": {

"type": "constant",
"constant": "legal"

},
"expression_if_false": {

"type": "constant",
"constant": "underage"

}
}

Note that this expression contains other expressions inside it! This is why expressions are powerful. (It also
contains a filter, but we haven’t covered those yet - if you find the "test" section confusing, keep reading. . .)

Note also that it’s important to make sure that you are comparing values of the same type. In this example, the
expression that retrieves the age property from the document also casts the value to an integer. If this datatype is
not specified, the expression will compare a string to the 21 value, which will not produce the expected results!

Switch Expression

class corehq.apps.userreports.expressions.specs.SwitchExpressionSpec(_obj=None, **kwargs)
This expression returns the value of the expression for the case that matches the switch on expression. Note that
case values may only be strings at this time.

{
"type": "switch",
"switch_on": {

"type": "property_name",
"property_name": "district"

},
"cases": {

"north": {
"type": "constant",
"constant": 4000

},
(continues on next page)

118 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"south": {
"type": "constant",
"constant": 2500

},
"east": {

"type": "constant",
"constant": 3300

},
"west": {

"type": "constant",
"constant": 65

},
},
"default": {

"type": "constant",
"constant": 0

}
}

Coalesce Expression

class corehq.apps.userreports.expressions.specs.CoalesceExpressionSpec(_obj=None, **kwargs)
This expression returns the value of the expression provided, or the value of the default_expression if the expres-
sion provided evaluates to a null or blank string.

{
"type": "coalesce",
"expression": {

"type": "property_name",
"property_name": "district"

},
"default_expression": {

"type": "constant",
"constant": "default_district"

}
}

Array Index Expression

class corehq.apps.userreports.expressions.specs.ArrayIndexExpressionSpec(_obj=None,
**kwargs)

This expression returns doc["siblings"][0]:

{
"type": "array_index",
"array_expression": {

"type": "property_name",
"property_name": "siblings"

},
(continues on next page)

25.2. Data Sources 119

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"index_expression": {
"type": "constant",
"constant": 0

}
}

It will return nothing if the siblings property is not a list, the index isn’t a number, or the indexed item doesn’t
exist.

Split String Expression

class corehq.apps.userreports.expressions.specs.SplitStringExpressionSpec(_obj=None,
**kwargs)

This expression returns (doc["foo bar"]).split(' ')[0]:

{
"type": "split_string",
"string_expression": {

"type": "property_name",
"property_name": "multiple_value_string"

},
"index_expression": {

"type": "constant",
"constant": 0

},
"delimiter": ","

}

The delimiter is optional and is defaulted to a space. It will return nothing if the string_expression is not a string,
or if the index isn’t a number or the indexed item doesn’t exist. The index_expression is also optional. Without
it, the expression will return the list of elements.

Iterator Expression

class corehq.apps.userreports.expressions.specs.IteratorExpressionSpec(_obj=None, **kwargs)

{
"type": "iterator",
"expressions": [

{
"type": "property_name",
"property_name": "p1"

},
{

"type": "property_name",
"property_name": "p2"

},
{

"type": "property_name",
"property_name": "p3"

(continues on next page)

120 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

(continued from previous page)

},
],
"test": {}

}

This will emit [doc.p1, doc.p2, doc.p3]. You can add a test attribute to filter rows from what is emitted
- if you don’t specify this then the iterator will include one row per expression it contains regardless of what is
passed in. This can be used/combined with the base_item_expression to emit multiple rows per document.

Base iteration number expressions

class corehq.apps.userreports.expressions.specs.IterationNumberExpressionSpec(_obj=None,
**kwargs)

These are very simple expressions with no config. They return the index of the repeat item starting from 0 when
used with a base_item_expression.

{
"type": "base_iteration_number"

}

Related document expressions

class corehq.apps.userreports.expressions.specs.RelatedDocExpressionSpec(_obj=None,
**kwargs)

This can be used to lookup a property in another document. Here’s an example that lets you look up form.case.
owner_id from a form.

{
"type": "related_doc",
"related_doc_type": "CommCareCase",
"doc_id_expression": {

"type": "property_path",
"property_path": ["form", "case", "@case_id"]

},
"value_expression": {

"type": "property_name",
"property_name": "owner_id"

}
}

25.2. Data Sources 121

CommCareHQ Documentation, Release 1.0

Ancestor location expression

class corehq.apps.locations.ucr_expressions.AncestorLocationExpression(_obj=None, **kwargs)
This is used to return a json object representing the ancestor of the given type of the given location. For instance,
if we had locations configured with a hierarchy like country -> state -> county -> city, we could pass
the location id of Cambridge and a location type of state to this expression to get the Massachusetts location.

{
"type": "ancestor_location",
"location_id": {

"type": "property_name",
"name": "owner_id"

},
"location_type": {

"type": "constant",
"constant": "state"

}
}

If no such location exists, returns null.

Optionally you can specifiy location_property to return a single property of the location.

{
"type": "ancestor_location",
"location_id": {

"type": "property_name",
"name": "owner_id"

},
"location_type": {

"type": "constant",
"constant": "state"

},
"location_property": "site_code"

}

Nested expressions

class corehq.apps.userreports.expressions.specs.NestedExpressionSpec(_obj=None, **kwargs)
These can be used to nest expressions. This can be used, e.g. to pull a specific property out of an item in a list
of objects.

The following nested expression is the equivalent of a property_path expression to ["outer", "inner"]
and demonstrates the functionality. More examples can be found in the practical examples.

{
"type": "nested",
"argument_expression": {

"type": "property_name",
"property_name": "outer"

},
"value_expression": {

"type": "property_name",
(continues on next page)

122 Chapter 25. User Configurable Reporting

./ucr/examples.html

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"property_name": "inner"
}

}

Dict expressions

class corehq.apps.userreports.expressions.specs.DictExpressionSpec(_obj=None, **kwargs)
These can be used to create dictionaries of key/value pairs. This is only useful as an intermediate structure in
another expression since the result of the expression is a dictionary that cannot be saved to the database.

See the practical examples for a way this can be used in a base_item_expression to emit multiple rows for a
single form/case based on different properties.

Here is a simple example that demonstrates the structure. The keys of properties must be text, and the values
must be valid expressions (or constants):

{
"type": "dict",
"properties": {

"name": "a constant name",
"value": {

"type": "property_name",
"property_name": "prop"

},
"value2": {

"type": "property_name",
"property_name": "prop2"

}
}

}

“Add Days” expressions

class corehq.apps.userreports.expressions.date_specs.AddDaysExpressionSpec(_obj=None,
**kwargs)

Below is a simple example that demonstrates the structure. The expression below will add 28 days to a property
called “dob”. The date_expression and count_expression can be any valid expressions, or simply constants.

{
"type": "add_days",
"date_expression": {

"type": "property_name",
"property_name": "dob",

},
"count_expression": 28

}

25.2. Data Sources 123

./ucr/examples.html

CommCareHQ Documentation, Release 1.0

“Add Hours” expressions

class corehq.apps.userreports.expressions.date_specs.AddHoursExpressionSpec(_obj=None,
**kwargs)

Below is a simple example that demonstrates the structure. The expression below will add 12 hours to a property
called “visit_date”. The date_expression and count_expression can be any valid expressions, or simply constants.

{
"type": "add_hours",
"date_expression": {

"type": "property_name",
"property_name": "visit_date",

},
"count_expression": 12

}

“Add Months” expressions

class corehq.apps.userreports.expressions.date_specs.AddMonthsExpressionSpec(_obj=None,
**kwargs)

add_months offsets given date by given number of calendar months. If offset results in an invalid day (for e.g.
Feb 30, April 31), the day of resulting date will be adjusted to last day of the resulting calendar month.

The date_expression and months_expression can be any valid expressions, or simply constants, including nega-
tive numbers.

{
"type": "add_months",
"date_expression": {

"type": "property_name",
"property_name": "dob",

},
"months_expression": 28

}

“Diff Days” expressions

class corehq.apps.userreports.expressions.date_specs.DiffDaysExpressionSpec(_obj=None,
**kwargs)

diff_days returns number of days between dates specified by from_date_expression and
to_date_expression. The from_date_expression and to_date_expression can be any valid expressions,
or simply constants.

{
"type": "diff_days",
"from_date_expression": {

"type": "property_name",
"property_name": "dob",

},
"to_date_expression": "2016-02-01"

}

124 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

“Month Start Date” and “Month End Date” expressions

class corehq.apps.userreports.expressions.date_specs.MonthStartDateExpressionSpec(_obj=None,
**kwargs)

month_start_date returns date of first day in the month of given date and month_end_date returns date of
last day in the month of given date.

The date_expression can be any valid expression, or simply constant

{
"type": "month_start_date",
"date_expression": {

"type": "property_name",
"property_name": "dob",

},
}

“Evaluator” expression

class corehq.apps.userreports.expressions.specs.EvalExpressionSpec(_obj=None, **kwargs)
evaluator expression can be used to evaluate statements that contain arithmetic (and simple python like
statements). It evaluates the statement specified by statement which can contain variables as defined in
context_variables.

{
"type": "evaluator",
"statement": "a + b - c + 6",
"context_variables": {

"a": 1,
"b": 20,
"c": {

"type": "property_name",
"property_name": "the_number_two"

}
}

}

This returns 25 (1 + 20 - 2 + 6).

statement

The expression statement to be evaluated.

context_variables

A dictionary of Expressions where keys are names of variables used in the statement and values are
expressions to generate those variables.

Variable types must be one of:

• str

• int

• float

• bool

25.2. Data Sources 125

CommCareHQ Documentation, Release 1.0

• date

• datetime

If context_variables is omitted, the current context of the expression will be used.

Expression limitations
Only a single expression is permitted.

Available operators:

• math operators (except the power operator)

• modulus

• negation

• comparison operators

• logical operators

In addition, expressions can perform the following operations:

• index: case[‘name’]

• slice: cases[0:2]

• if statements: 1 if case.name == ‘bob’ else 0

• list comprehension: [i for i in range(3)]

• dict, list, set construction: {“a”: 1, “b”: set(cases), “c”: list(range(4))}

Available Functions
Only the following functions are available in the evaluation context:

context()

Get the current evaluation context. See also root_context().

date(value, fmt=None)
Parse a string value as a date or timestamp. If fmt is not supplied the string is assumed to be in
ISO 8601 format.

Parameters
fmt – If supplied, use this format specification to parse the date. See the Python
documentation for Format Codes.

float(value)
Convert value to a floating point number.

int(value)
Convert value to an int. Value can be a number or a string representation of a number.

jsonpath(expr, as_list=False, context=None)
Evaluate a jsonpath expression.

See also Jsonpath Expression.

jsonpath("form.case.name")
jsonpath("name", context=jsonpath("form.case"))
jsonpath("form..case", as_list=True)

Parameters

126 Chapter 25. User Configurable Reporting

https://en.wikibooks.org/wiki/Python_Programming/Basic_Math#Mathematical_Operators
https://en.wikibooks.org/wiki/Python_Programming/Operators#Modulus
https://en.wikibooks.org/wiki/Python_Programming/Operators#Negation
https://en.wikibooks.org/wiki/Python_Programming/Operators#Comparison
https://en.wikibooks.org/wiki/Python_Programming/Operators#Logical_Operators
https://www.cl.cam.ac.uk/~mgk25/iso-time.html
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

CommCareHQ Documentation, Release 1.0

• expr – The jsonpath expression.
• as_list – When set to True, always return the full list of matches, even if it is

emtpy. If set to False then the return value will be None if no matches are found. If
a single match is found the matched value will be returned. If more than one match
is found, they will all be returned as a list.

• context – Optional context for evaluation. If not supplied the full context of the
evaluator will be used.

Returns
See as_list.

named(name, context=None)
Call a named expression. See also Named Expressions.

named("my-named-expression")
named("my-named-expression", context=form.case)

rand()

Generate a random number between 0 and 1

randint(max)
Generate a random integer between 0 and max

range(start[, stop][, skip])
Produces a sequence of integers from start (inclusive) to stop (exclusive) by step. Note that for
performance reasons this is limited to 100 items or less. See range.

root_context()

Get the root context of the evaluation. Similar to the root_doc expression.

See also context().

round(value, ndigits=None)
Round a number to the nearest integer or ndigits after the decimal point. See round.

str(value)
Convert value to a string.

timedelta_to_seconds(delta)
Convert a TimeDelta object into seconds. This is useful for getting the number of seconds be-
tween two dates.

timedelta_to_seconds(time_end - time_start)

today()

Return the current UTC date.

See also Evaluator Examples.

25.2. Data Sources 127

https://docs.python.org/3/library/functions.html?#range
https://docs.python.org/3/library/functions.html?#round

CommCareHQ Documentation, Release 1.0

‘Get Case Sharing Groups’ expression

class corehq.apps.userreports.expressions.specs.CaseSharingGroupsExpressionSpec(_obj=None,
**kwargs)

get_case_sharing_groups will return an array of the case sharing groups that are assigned to a provided user
ID. The array will contain one document per case sharing group.

{
"type": "get_case_sharing_groups",
"user_id_expression": {

"type": "property_path",
"property_path": ["form", "meta", "userID"]

}
}

‘Get Reporting Groups’ expression

class corehq.apps.userreports.expressions.specs.ReportingGroupsExpressionSpec(_obj=None,
**kwargs)

get_reporting_groups will return an array of the reporting groups that are assigned to a provided user ID.
The array will contain one document per reporting group.

{
"type": "get_reporting_groups",
"user_id_expression": {

"type": "property_path",
"property_path": ["form", "meta", "userID"]

}
}

Filter, Sort, Map and Reduce Expressions

We have following expressions that act on a list of objects or list of lists. The list to operate on is specified by
items_expression. This can be any valid expression that returns a list. If the items_expression doesn’t return a
valid list, these might either fail or return one of empty list or None value.

map_items Expression

class corehq.apps.userreports.expressions.list_specs.MapItemsExpressionSpec(_obj=None,
**kwargs)

map_items performs a calculation specified by map_expression on each item of the list specified by
items_expression and returns a list of the calculation results. The map_expression is evaluated relative
to each item in the list and not relative to the parent document from which the list is specified. For e.g. if
items_expression is a path to repeat-list of children in a form document, map_expression is a path relative
to the repeat item.

items_expression can be any valid expression that returns a list. If this doesn’t evaluate to a list an empty list
is returned. It may be necessary to specify a datatype of array if the expression could return a single element.

map_expression can be any valid expression relative to the items in above list.

128 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

{
"type": "map_items",
"items_expression": {

"datatype": "array",
"type": "property_path",
"property_path": ["form", "child_repeat"]

},
"map_expression": {

"type": "property_path",
"property_path": ["age"]

}
}

Above returns list of ages. Note that the property_path in map_expression is relative to the repeat item
rather than to the form.

filter_items Expression

class corehq.apps.userreports.expressions.list_specs.FilterItemsExpressionSpec(_obj=None,
**kwargs)

filter_items performs filtering on given list and returns a new list. If the boolean expression specified by
filter_expression evaluates to a True value, the item is included in the new list and if not, is not included
in the new list.

items_expression can be any valid expression that returns a list. If this doesn’t evaluate to a list an empty list
is returned. It may be necessary to specify a datatype of array if the expression could return a single element.

filter_expression can be any valid boolean expression relative to the items in above list.

{
"type": "filter_items",
"items_expression": {

"datatype": "array",
"type": "property_name",
"property_name": "family_repeat"

},
"filter_expression": {
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "gender"

},
"operator": "eq",
"property_value": "female"

}
}

25.2. Data Sources 129

CommCareHQ Documentation, Release 1.0

sort_items Expression

class corehq.apps.userreports.expressions.list_specs.SortItemsExpressionSpec(_obj=None,
**kwargs)

sort_items returns a sorted list of items based on sort value of each item.The sort value of an item is specified
by sort_expression. By default, list will be in ascending order. Order can be changed by adding optional
order expression with one of DESC (for descending) or ASC (for ascending) If a sort-value of an item is None,
the item will appear in the start of list. If sort-values of any two items can’t be compared, an empty list is returned.

items_expression can be any valid expression that returns a list. If this doesn’t evaluate to a list an empty list
is returned. It may be necessary to specify a datatype of array if the expression could return a single element.

sort_expression can be any valid expression relative to the items in above list, that returns a value to be used
as sort value.

{
"type": "sort_items",
"items_expression": {

"datatype": "array",
"type": "property_path",
"property_path": ["form", "child_repeat"]

},
"sort_expression": {

"type": "property_path",
"property_path": ["age"]

}
}

reduce_items Expression

class corehq.apps.userreports.expressions.list_specs.ReduceItemsExpressionSpec(_obj=None,
**kwargs)

reduce_items returns aggregate value of the list specified by aggregation_fn.

items_expression can be any valid expression that returns a list. If this doesn’t evaluate to a list,
aggregation_fn will be applied on an empty list. It may be necessary to specify a datatype of array if
the expression could return a single element.

aggregation_fn is one of following supported functions names.

Function Name Example
count ['a', 'b'] -> 2
sum [1, 2, 4] -> 7
min [2, 5, 1] -> 1
max [2, 5, 1] -> 5
first_item ['a', 'b'] -> ‘a’
last_item ['a', 'b'] -> ‘b’
join ['a', 'b'] -> ‘ab’

{
"type": "reduce_items",

(continues on next page)

130 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"items_expression": {
"datatype": "array",
"type": "property_name",
"property_name": "family_repeat"

},
"aggregation_fn": "count"

}

This returns number of family members

flatten expression

class corehq.apps.userreports.expressions.list_specs.FlattenExpressionSpec(_obj=None,
**kwargs)

flatten takes list of list of objects specified by items_expression and returns one list of all objects.

items_expression is any valid expression that returns a list of lists. It this doesn’t evaluate to a list of lists
an empty list is returned. It may be necessary to specify a datatype of array if the expression could return a
single element.

{
"type": "flatten",
"items_expression": {},

}

Named Expressions

class corehq.apps.userreports.expressions.specs.NamedExpressionSpec(_obj=None, **kwargs)
Last, but certainly not least, are named expressions. These are special expressions that can be defined once in a
data source and then used throughout other filters and indicators in that data source. This allows you to write out
a very complicated expression a single time, but still use it in multiple places with a simple syntax.

Named expressions are defined in a special section of the data source. To reference a named expression, you just
specify the type of "named" and the name as follows:

{
"type": "named",
"name": "my_expression"

}

This assumes that your named expression section of your data source includes a snippet like the following:

{
"my_expression": {

"type": "property_name",
"property_name": "test"

}
}

This is just a simple example - the value that "my_expression" takes on can be as complicated as you want and
it can also reference other named expressions as long as it doesn’t reference itself of create a recursive cycle.

25.2. Data Sources 131

CommCareHQ Documentation, Release 1.0

See also the named evaluator function.

Boolean Expression Filters

A boolean_expression filter combines an expression, an operator, and a property value (a constant), to produce a
statement that is either True or False. Note: in the future the constant value may be replaced with a second expression
to be more general, however currently only constant property values are supported.

Here is a sample JSON format for simple boolean_expression filter:

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "age",
"datatype": "integer"

},
"operator": "gt",
"property_value": 21

}

This is equivalent to the python statement: doc["age"] > 21

Operators

The following operators are currently supported:

Operator Description Value
type

Example

eq is equal constant doc["age"] == 21
not_eq is not equal constant doc["age"] != 21
in single value is in a list list doc["color"] in ["red", "blue"]
in_multi a value is in a multi select list selected(doc["color"], "red")
any_in_multi one of a list of values in in a mul-

tiselect
list selected(doc["color"], ["red",

"blue"])
lt is less than number doc["age"] < 21
lte is less than or equal number doc["age"] <= 21
gt is greater than number doc["age"] > 21
gte is greater than or equal number doc["age"] >= 21
regex matches regular expression string re.search("^([Rr]ed|[Bb]lue)$",

doc["color"])

132 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Compound filters

Compound filters build on top of boolean_expression filters to create boolean logic. These can be combined to
support arbitrarily complicated boolean logic on data. There are three types of filters, and, or, and not filters. The
JSON representation of these is below. Hopefully these are self explanatory.

“And” Filters

The following filter represents the statement: doc["age"] < 21 and doc["nationality"] == "american":

{
"type": "and",
"filters": [

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "age",
"datatype": "integer"

},
"operator": "lt",
"property_value": 21

},
{

"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "nationality",

},
"operator": "eq",
"property_value": "american"

}
]

}

“Or” Filters

The following filter represents the statement: doc["age"] > 21 or doc["nationality"] == "european":

{
"type": "or",
"filters": [

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "age",
"datatype": "integer",

},
"operator": "gt",
"property_value": 21

(continues on next page)

25.2. Data Sources 133

CommCareHQ Documentation, Release 1.0

(continued from previous page)

},
{

"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "nationality",

},
"operator": "eq",
"property_value": "european"

}
]

}

“Not” Filters

The following filter represents the statement: !(doc["nationality"] == "european"):

{
"type": "not",
"filter": [

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "nationality",

},
"operator": "eq",
"property_value": "european"

}
]

}

Note that this could be represented more simply using a single filter with the ``not_eq`` operator, but “not” filters can
represent more complex logic than operators generally, since the filter itself can be another compound filter.

Practical Examples

See practical examples for some practical examples showing various filter types.

25.2.2 Indicators

Now that we know how to filter the data in our data source, we are still left with a very important problem: how do we
know what data to save? This is where indicators come in. Indicators are the data outputs - what gets computed and
put in a column in the database.

A typical data source will include many indicators (data that will later be included in the report). This section will
focus on defining a single indicator. Single indicators can then be combined in a list to fully define a data source.

The overall set of possible indicators is theoretically any function that can take in a single document (form or case) and
output a value. However the set of indicators that are configurable is more limited than that.

134 Chapter 25. User Configurable Reporting

./ucr/examples.html

CommCareHQ Documentation, Release 1.0

Indicator Properties

All indicator definitions have the following properties:

Property Description
type A specified type for the indicator. It must be one of the types listed below.
column_id The database column where the indicator will be saved.
display_name A display name for the indicator (not widely used, currently).
comment A string describing the indicator

Additionally, specific indicator types have other type-specific properties. These are covered below.

Indicator types

The following primary indicator types are supported:

Indicator Type Description
boolean Save 1 if a filter is true, otherwise 0.
expression Save the output of an expression.
choice_list Save multiple columns, one for each of a predefined set of choices
ledger_balances Save a column for each product specified, containing ledger data

Note/todo: there are also other supported formats, but they are just shortcuts around the functionality of these ones
they are left out of the current docs.

Boolean indicators

Now we see again the power of our filter framework defined above! Boolean indicators take any arbitrarily complicated
filter expression and save a 1 to the database if the expression is true, otherwise a 0. Here is an example boolean
indicator which will save 1 if a form has a question with ID is_pregnant with a value of "yes":

{
"type": "boolean",
"column_id": "col",
"filter": {

"type": "boolean_expression",
"expression": {

"type": "property_path",
"property_path": ["form", "is_pregnant"],

},
"operator": "eq",
"property_value": "yes"

}
}

25.2. Data Sources 135

CommCareHQ Documentation, Release 1.0

Expression indicators

Similar to the boolean indicators - expression indicators leverage the expression structure defined above to create arbi-
trarily complex indicators. Expressions can store arbitrary values from documents (as opposed to boolean indicators
which just store 0‘s and 1‘s). Because of this they require a few additional properties in the definition:

Property Description
datatype The datatype of the indicator. Current valid choices are: “date”, “datetime”, “string”, “decimal”,

“integer”, and “small_integer”.
is_nullable Whether the database column should allow null values.
is_primary_keyWhether the database column should be (part of?) the primary key. (TODO: this needs to be con-

firmed)
cre-
ate_index

Creates an index on this column. Only applicable if using the SQL backend

expression Any expression.
transform (optional) transform to be applied to the result of the expression. (see “Report Columns > Trans-

forms” section below)

Here is a sample expression indicator that just saves the “age” property to an integer column in the database:

{
"type": "expression",
"expression": {

"type": "property_name",
"property_name": "age"

},
"column_id": "age",
"datatype": "integer",
"display_name": "age of patient"

}

Choice list indicators

Choice list indicators take a single choice column (select or multiselect) and expand it into multiple columns where
each column represents a different choice. These can support both single-select and multi-select quesitons.

A sample spec is below:

{
"type": "choice_list",
"column_id": "col",
"display_name": "the category",
"property_name": "category",
"choices": [

"bug",
"feature",
"app",
"schedule"

],
"select_style": "single"

}

136 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Ledger Balance Indicators

Ledger Balance indicators take a list of product codes and a ledger section, and produce a column for each product
code, saving the value found in the corresponding ledger.

Property Description
ledger_section The ledger section to use for this indicator, for example, “stock”
prod-
uct_codes

A list of the products to include in the indicator. This will be used in conjunction with the
column_id to produce each column name.

case_id_expressionAn expression used to get the case where each ledger is found. If not specified, it will use the row’s
doc id.

{
"type": "ledger_balances",
"column_id": "soh",
"display_name": "Stock On Hand",
"ledger_section": "stock",
"product_codes": ["aspirin", "bandaids", "gauze"],
"case_id_expression": {

"type": "property_name",
"property_name": "_id"

}
}

This spec would produce the following columns in the data source:

soh_aspirin soh_bandaids soh_gauze
20 11 5
67 32 9

If the ledger you’re using is a due list and you wish to save the dates instead of integers, you can change the “type” from
“ledger_balances” to “due_list_date”.

Practical notes for creating indicators

These are some practical notes for how to choose what indicators to create.

Fractions

All indicators output single values. Though fractional indicators are common, these should be modeled as two separate
indicators (for numerator and denominator) and the relationship should be handled in the report UI config layer.

25.2. Data Sources 137

CommCareHQ Documentation, Release 1.0

25.2.3 Saving Multiple Rows per Case/Form

You can save multiple rows per case/form by specifying a root level base_item_expression that describes how to get
the repeat data from the main document. You can also use the root_doc expression type to reference parent properties
and the base_iteration_number expression type to reference the current index of the item. This can be combined
with the iterator expression type to do complex data source transforms. This is not described in detail, but the
following sample (which creates a table off of a repeat element called “time_logs” can be used as a guide). There are
also additional examples in the practical examples:

{
"domain": "user-reports",
"doc_type": "DataSourceConfiguration",
"referenced_doc_type": "XFormInstance",
"table_id": "sample-repeat",
"display_name": "Time Logged",
"base_item_expression": {

"type": "property_path",
"property_path": ["form", "time_logs"]

},
"configured_filter": {
},
"configured_indicators": [

{
"type": "expression",
"expression": {

"type": "property_name",
"property_name": "start_time"

},
"column_id": "start_time",
"datatype": "datetime",
"display_name": "start time"

},
{

"type": "expression",
"expression": {

"type": "property_name",
"property_name": "end_time"

},
"column_id": "end_time",
"datatype": "datetime",
"display_name": "end time"

},
{

"type": "expression",
"expression": {

"type": "property_name",
"property_name": "person"

},
"column_id": "person",
"datatype": "string",
"display_name": "person"

},
{

(continues on next page)

138 Chapter 25. User Configurable Reporting

./ucr/examples.html

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"type": "expression",
"expression": {

"type": "root_doc",
"expression": {

"type": "property_name",
"property_name": "name"

}
},
"column_id": "name",
"datatype": "string",
"display_name": "name of ticket"

}
]

}

25.2.4 Data Cleaning and Validation

Note this is only available for “static” data sources that are created in the HQ repository.

When creating a data source it can be valuable to have strict validation on the type of data that can be inserted. The
attribute validations at the top level of the configuration can use UCR expressions to determine if the data is invalid.
If an expression is deemed invalid, then the relevant error is stored in the InvalidUCRData model.

{
"domain": "user-reports",
"doc_type": "DataSourceConfiguration",
"referenced_doc_type": "XFormInstance",
"table_id": "sample-repeat",
"base_item_expression": {},
"validations": [{

"name": "is_starred_valid",
"error_message": "is_starred has unexpected value",
"expression": {

"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "is_starred"

},
"operator": "in",
"property_value": ["yes", "no"]

}
}],
"configured_filter": { },
"configured_indicators": []

}

25.2. Data Sources 139

CommCareHQ Documentation, Release 1.0

25.3 Report Configurations

A report configuration takes data from a data source and renders it in the UI. A report configuration consists of a few
different sections:

1. Report Filters - These map to filters that show up in the UI, and should translate to queries that can be made to
limit the returned data.

2. Aggregation - This defines what each row of the report will be. It is a list of columns forming the primary key of
each row.

3. Report Columns - Columns define the report columns that show up from the data source, as well as any aggre-
gation information needed.

4. Charts - Definition of charts to display on the report.

5. Sort Expression - How the rows in the report are ordered.

6. Distinct On - Pick distinct rows from result based on columns.

25.3.1 Samples

Here are some sample configurations that can be used as a reference until we have better documentation.

• Dimagi chart report

• GSID form report

25.3.2 Report Filters

The documentation for report filters is still in progress. Apologies for brevity below.

A note about report filters versus data source filters
Report filters are completely different from data source filters. Data source filters limit the global set of data that ends
up in the table, whereas report filters allow you to select values to limit the data returned by a query.

Numeric Filters

Numeric filters allow users to filter the rows in the report by comparing a column to some constant that the user specifies
when viewing the report. Numeric filters are only intended to be used with numeric (integer or decimal type) columns.
Supported operators are =, , <, , >, and .

ex:

{
"type": "numeric",
"slug": "number_of_children_slug",
"field": "number_of_children",
"display": "Number of Children"

}

140 Chapter 25. User Configurable Reporting

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/userreports/examples/dimagi/dimagi-chart-report.json
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/userreports/examples/gsid/gsid-form-report.json

CommCareHQ Documentation, Release 1.0

Date filters

Date filters allow you filter on a date. They will show a datepicker in the UI.

{
"type": "date",
"slug": "modified_on",
"field": "modified_on",
"display": "Modified on",
"required": false

}

Date filters have an optional compare_as_string option that allows the date filter to be compared against an indicator
of data type string. You shouldn’t ever need to use this option (make your column a date or datetime type instead),
but it exists because the report builder needs it.

Quarter filters

Quarter filters are similar to date filters, but a choice is restricted only to the particular quarter of the year. They will
show inputs for year and quarter in the UI.

{
"type": "quarter",
"slug": "modified_on",
"field": "modified_on",
"display": "Modified on",
"required": false

}

Pre-Filters

Pre-filters offer the kind of functionality you get from data source filters. This makes it easier to use one data source for
many reports, especially if some of those reports just need the data source to be filtered slightly differently. Pre-filters
do not need to be configured by app builders in report modules; fields with pre-filters will not be listed in the report
module among the other fields that can be filtered.

A pre-filter’s type is set to “pre”:

{
"type": "pre",
"field": "at_risk_field",
"slug": "at_risk_slug",
"datatype": "string",
"pre_value": "yes"

}

If pre_value is scalar (i.e. datatype is “string”, “integer”, etc.), the filter will use the “equals” operator. If
pre_value is null, the filter will use “is null”. If pre_value is an array, the filter will use the “in” operator. e.g.

{
"type": "pre",
"field": "at_risk_field",
"slug": "at_risk_slug",

(continues on next page)

25.3. Report Configurations 141

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"datatype": "array",
"pre_value": ["yes", "maybe"]

}

(If pre_value is an array and datatype is not “array”, it is assumed that datatype refers to the data type of the
items in the array.)

You can optionally specify the operator that the prevalue filter uses by adding a pre_operator argument. e.g.

{
"type": "pre",
"field": "at_risk_field",
"slug": "at_risk_slug",
"datatype": "array",
"pre_value": ["maybe", "yes"],
"pre_operator": "between"

}

Note that instead of using eq, gt, etc, you will need to use =, >, etc.

Dynamic choice lists

Dynamic choice lists provide a select widget that will generate a list of options dynamically.

The default behavior is simply to show all possible values for a column, however you can also specify a
choice_provider to customize this behavior (see below).

Simple example assuming “village” is a name:

{
"type": "dynamic_choice_list",
"slug": "village",
"field": "village",
"display": "Village",
"datatype": "string"

}

Choice providers

Currently the supported choice_providers are supported:

Field Description
location Select a location by name
user Select a user
owner Select a possible case owner owner (user, group, or location)

Location choice providers also support three additional configuration options:

• “include_descendants” - Include descendants of the selected locations in the results. Defaults to false.

• “show_full_path” - Display the full path to the location in the filter. Defaults to false. The default behavior
shows all locations as a flat alphabetical list.

142 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

• “location_type” - Includes locations of this type only. Default is to not filter on location type.

Example assuming “village” is a location ID, which is converted to names using the location choice_provider:

{
"type": "dynamic_choice_list",
"slug": "village",
"field": "location_id",
"display": "Village",
"datatype": "string",
"choice_provider": {

"type": "location",
"include_descendants": true,
"show_full_path": true,
"location_type": "district"

}
}

Choice lists

Choice lists allow manual configuration of a fixed, specified number of choices and let you change what they look like
in the UI.

{
"type": "choice_list",
"slug": "role",
"field": "role",
"choices": [
{"value": "doctor", "display": "Doctor"},
{"value": "nurse"}

]
}

Drilldown by Location

This filter allows selection of a location for filtering by drilling down from top level.

{
"type": "location_drilldown",
"slug": "by_location",
"field": "district_id",
"include_descendants": true,
"max_drilldown_levels": 3

}

• “include_descendants” - Include descendant locations in the results. Defaults to false.

• “max_drilldown_levels” - Maximum allowed drilldown levels. Defaults to 99

25.3. Report Configurations 143

CommCareHQ Documentation, Release 1.0

Internationalization

Report builders may specify translations for the filter display value. Also see the sections on internationalization in the
Report Column and the translations transform.

{
"type": "choice_list",
"slug": "state",
"display": {"en": "State", "fr": "État"},

}

25.3.3 Report Columns

Reports are made up of columns. The currently supported column types ares:

• field which represents a single value

• percent which combines two values in to a percent

• aggregate_date which aggregates data by month

• expanded which expands a select question into multiple columns

• expression which can do calculations on data in other columns

Field columns

Field columns have a type of "field". Here’s an example field column that shows the owner name from an associated
owner_id:

{
"type": "field",
"field": "owner_id",
"column_id": "owner_id",
"display": "Owner Name",
"format": "default",
"transform": {

"type": "custom",
"custom_type": "owner_display"

},
"aggregation": "simple"

}

Percent columns

Percent columns have a type of "percent". They must specify a numerator and denominator as separate field
columns. Here’s an example percent column that shows the percentage of pregnant women who had danger signs.

{
"type": "percent",
"column_id": "pct_danger_signs",
"display": "Percent with Danger Signs",
"format": "both",

(continues on next page)

144 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"denominator": {
"type": "field",
"aggregation": "sum",
"field": "is_pregnant",
"column_id": "is_pregnant"

},
"numerator": {
"type": "field",
"aggregation": "sum",
"field": "has_danger_signs",
"column_id": "has_danger_signs"

}
}

Formats

The following percentage formats are supported.

Format Description example
percent A whole number percentage (the default format) 33%
fraction A fraction 1/3
both Percentage and fraction 33% (1/3)
numeric_percent Percentage as a number 33
decimal Fraction as a decimal number .333

AggregateDateColumn

AggregateDate columns allow for aggregating data by month over a given date field. They have a type of
"aggregate_date". Unlike regular fields, you do not specify how aggregation happens, it is automatically grouped
by month.

Here’s an example of an aggregate date column that aggregates the received_on property for each month (allowing
you to count/sum things that happened in that month).

{
"column_id": "received_on",
"field": "received_on",
"type": "aggregate_date",
"display": "Month"

}

AggregateDate supports an optional “format” parameter, which accepts the same format string as Date formatting. If
you don’t specify a format, the default will be “%Y-%m”, which will show as, for example, “2008-09”.

Keep in mind that the only variables available for formatting are year and month, but that still gives you a fair range,
e.g.

25.3. Report Configurations 145

https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior

CommCareHQ Documentation, Release 1.0

format Example result
“%Y-%m” “2008-09”
“%B, %Y” “September, 2008”
“%b (%y)” “Sep (08)”

IntegerBucketsColumn

Bucket columns allow you to define a series of ranges with corresponding names, then group together rows where
a specific field’s value falls within those ranges. These ranges are inclusive, since they are implemented using the
between operator. It is the user’s responsibility to make sure the ranges do not overlap; if a value falls into multiple
ranges, it is undefined behavior which bucket it will be assigned to.

Here’s an example that groups children based on their age at the time of registration:

{
"display": "age_range",
"column_id": "age_range",
"type": "integer_buckets",
"field": "age_at_registration",
"ranges": {

"infant": [0, 11],
"toddler": [12, 35],
"preschooler": [36, 60]

},
"else_": "older"

}

The "ranges" attribute maps conditional expressions to labels. If the field’s value does not fall into any of these ranges,
the row will receive the "else_" value, if provided.

SumWhenColumn and SumWhenTemplateColumn

Note: SumWhenColumn usage is limited to static reports, and SumWhenTemplateColumn usage is behind a feature flag.

Sum When columns allow you to aggregate data based on arbitrary conditions.

The SumWhenColumn allows any expression.

The SumWhenTemplateColumn is used in conjunction with a subclass of SumWhenTemplateSpec. The template
defines an expression and typically accepts binds. An example:

Example using sum_when:

{
"display": "under_six_month_olds",
"column_id": "under_six_month_olds",
"type": "sum_when",
"field": "age_at_registration",
"whens": [

["age_at_registration < 6", 1],
],
"else_": 0

}

146 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Equivalent example using sum_when_template:

{
"display": "under_x_month_olds",
"column_id": "under_x_month_olds",
"type": "sum_when_template",
"field": "age_at_registration",
"whens": [

{
"type": "under_x_months",
"binds": [6],
"then": 1

}
],
"else_": 0

}

Expanded Columns

Expanded columns have a type of "expanded". Expanded columns will be “expanded” into a new column for each
distinct value in this column of the data source. For example:

If you have a data source like this:

+---------|----------|-------------+
| Patient | district | test_result |
+---------|----------|-------------+
Joe	North	positive
Bob	North	positive
Fred	South	negative
+---------|----------|-------------+

and a report configuration like this:

aggregation columns:
["district"]

columns:
[
{
"type": "field",
"field": "district",
"column_id": "district",
"format": "default",
"aggregation": "simple"

},
{
"type": "expanded",
"field": "test_result",
"column_id": "test_result",
"format": "default"

}
]

25.3. Report Configurations 147

CommCareHQ Documentation, Release 1.0

Then you will get a report like this:

+----------|----------------------|----------------------+
| district | test_result-positive | test_result-negative |
+----------|----------------------|----------------------+
| North | 2 | 0 |
| South | 0 | 1 |
+----------|----------------------|----------------------+

Expanded columns have an optional parameter "max_expansion" (defaults to 10) which limits the number of columns
that can be created. WARNING: Only override the default if you are confident that there will be no adverse performance
implications for the server.

Expression columns

Expression columns can be used to do just-in-time calculations on the data coming out of reports. They allow you to
use any UCR expression on the data in the report row. These can be referenced according to the column_ids from the
other defined column. They can support advanced use cases like doing math on two different report columns, or doing
conditional logic based on the contents of another column.

A simple example is below, which assumes another called “number” in the report and shows how you could make a
column that is 10 times that column.

{
"type": "expression",
"column_id": "by_tens",
"display": "Counting by tens",
"expression": {

"type": "evaluator",
"statement": "a * b",
"context_variables": {

"a": {
"type": "property_name",
"property_name": "number"

},
"b": 10

}
}

}

Expression columns cannot be used in aggregations or filters. If you need to group by a derived value, then you
must add that directly to your data source.

The “aggregation” column property

The aggregation column property defines how the column should be aggregated. If the report is not doing any aggre-
gation, or if the column is one of the aggregation columns this should always be "simple" (see Aggregation below for
more information on aggregation).

The following table documents the other aggregation options, which can be used in aggregate reports.

148 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Format Description
simple No aggregation
avg Average (statistical mean) of the values
count_unique Count the unique values found
count Count all rows
min Choose the minimum value
max Choose the maximum value
sum Sum the values

Column IDs

Column IDs in percentage fields must be unique for the whole report. If you use a field in a normal column and in a
percent column you must assign unique column_id values to it in order for the report to process both.

Calculating Column Totals

To sum a column and include the result in a totals row at the bottom of the report, set the calculate_total value in
the column configuration to true.

Not supported for the following column types: - expression

Internationalization

Report columns can be translated into multiple languages. To translate values in a given column check out the transla-
tions transform below. To specify translations for a column header, use an object as the display value in the configu-
ration instead of a string. For example:

{
"type": "field",
"field": "owner_id",
"column_id": "owner_id",
"display": {

"en": "Owner Name",
"he": ""

},
"format": "default",
"transform": {

"type": "custom",
"custom_type": "owner_display"

},
"aggregation": "simple"

}

The value displayed to the user is determined as follows: - If a display value is specified for the users language, that
value will appear in the report. - If the users language is not present, display the "en" value. - If "en" is not present,
show an arbitrary translation from the display object. - If display is a string, and not an object, the report shows
the string.

Valid display languages are any of the two or three letter language codes available on the user settings page.

25.3. Report Configurations 149

CommCareHQ Documentation, Release 1.0

25.3.4 Aggregation

Aggregation in reports is done using a list of columns to aggregate on. This defines how indicator data will be aggre-
gated into rows in the report. The columns represent what will be grouped in the report, and should be the column_ids
of valid report columns. In most simple reports you will only have one level of aggregation. See examples below.

No aggregation

Note that if you use is_primary_key in any of your columns, you must include all primary key columns here.

["doc_id"]

Aggregate by ‘username’ column

["username"]

Aggregate by two columns

["column1", "column2"]

25.3.5 Transforms

Transforms can be used in two places - either to manipulate the value of a column just before it gets saved to a data
source, or to transform the value returned by a column just before it reaches the user in a report. Here’s an example of
a transform used in a report config ‘field’ column:

{
"type": "field",
"field": "owner_id",
"column_id": "owner_id",
"display": "Owner Name",
"format": "default",
"transform": {

"type": "custom",
"custom_type": "owner_display"

},
"aggregation": "simple"

}

The currently supported transform types are shown below:

150 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Translations and arbitrary mappings

The translations transform can be used to give human readable strings:

{
"type": "translation",
"translations": {

"lmp": "Last Menstrual Period",
"edd": "Estimated Date of Delivery"

}
}

And for translations:

{
"type": "translation",
"translations": {

"lmp": {
"en": "Last Menstrual Period",
"es": "Fecha Última Menstruación",

},
"edd": {

"en": "Estimated Date of Delivery",
"es": "Fecha Estimada de Parto",

}
}

}

To use this in a mobile ucr, set the 'mobile_or_web' property to 'mobile'

{
"type": "translation",
"mobile_or_web": "mobile",
"translations": {

"lmp": "Last Menstrual Period",
"edd": "Estimated Date of Delivery"

}
}

Displaying Readable User Name (instead of user ID)

This takes a user_id value and changes it to HQ’s best guess at the user’s display name, using their first and last name,
if available, then falling back to their username.

{
"type": "custom",
"custom_type": "user_display_including_name"

}

25.3. Report Configurations 151

CommCareHQ Documentation, Release 1.0

Displaying username instead of user ID

{
"type": "custom",
"custom_type": "user_display"

}

Displaying username minus @domain.commcarehq.org instead of user ID

{
"type": "custom",
"custom_type": "user_without_domain_display"

}

Displaying owner name instead of owner ID

{
"type": "custom",
"custom_type": "owner_display"

}

Displaying month name instead of month index

{
"type": "custom",
"custom_type": "month_display"

}

Rounding decimals

Rounds decimal and floating point numbers to two decimal places.

{
"type": "custom",
"custom_type": "short_decimal_display"

}

Generic number formatting

Rounds numbers using Python’s built in formatting.

See below for a few simple examples. Read the docs for complex ones. The input to the format string will be a number
not a string.

If the format string is not valid or the input is not a number then the original input will be returned.

152 Chapter 25. User Configurable Reporting

https://docs.python.org/2.7/library/string.html#string-formatting

CommCareHQ Documentation, Release 1.0

Round to the nearest whole number

{
"type": "number_format",
"format_string": "{0:.0f}"

}

Rich text formatting with Markdown

This can be used to do some rich text formatting, using [Markdown](https://www.markdownguide.org/).

There is no configuration required, it will assume the input is valid, markdown-ready text.

{
"type": "markdown"

}

This transform works for report columns only. Using it in a data source will add HTML markup, but it will not be
displayed properly in HQ.

Always round to 3 decimal places

{
"type": "number_format",
"format_string": "{0:.3f}"

}

Date formatting

Formats dates with the given format string. See here for an explanation of format string behavior. If there is an error
formatting the date, the transform is not applied to that value.

{
"type": "date_format",
"format": "%Y-%m-%d %H:%M"

}

Converting an ethiopian date string to a gregorian date

Converts a string in the YYYY-MM-DD format to a gregorian date. For example, 2009-09-11 is converted to date(2017,
5, 19). If it is unable to convert the date, it will return an empty string.

{
"type": "custom",
"custom_type": "ethiopian_date_to_gregorian_date"

}

25.3. Report Configurations 153

https://www.markdownguide.org/
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior

CommCareHQ Documentation, Release 1.0

Converting a gregorian date string to an ethiopian date

Converts a string in the YYYY-MM-DD format to an ethiopian date. For example, 2017-05-19 is converted to
date(2009, 09, 11). If it is unable to convert the date, it will return an empty string.

{
"type": "custom",
"custom_type": "gregorian_date_to_ethiopian_date"

}

25.3.6 Charts

There are currently three types of charts supported. Pie charts, and two types of bar charts.

Pie charts

A pie chart takes two inputs and makes a pie chart. Here are the inputs:

Field Description
aggregation_colu mn The column you want to group - typically a column from a select question
value_column The column you want to sum - often just a count

Here’s a sample spec:

{
"type": "pie",
"title": "Remote status",
"aggregation_column": "remote",
"value_column": "count"

}

Aggregate multibar charts

An aggregate multibar chart is used to aggregate across two columns (typically both of which are select questions). It
takes three inputs:

Field Description
pri-
mary_aggregation

The primary aggregation. These will be the x-axis on the chart.

secondary_aggregati
on

The secondary aggregation. These will be the slices of the bar (or individual bars in
“grouped” format)

value_column The column you want to sum - often just a count

Here’s a sample spec:

{
"type": "multibar-aggregate",
"title": "Applicants by type and location",

(continues on next page)

154 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"primary_aggregation": "remote",
"secondary_aggregation": "applicant_type",
"value_column": "count"

}

Multibar charts

A multibar chart takes a single x-axis column (typically a user, date, or select question) and any number of y-axis
columns (typically indicators or counts) and makes a bar chart from them.

Field Description
x_axis_columnThis will be the x-axis on the chart.
y_axis_columnsThese are the columns to use for the secondary axis. These will be the slices of the bar (or individual

bars in “grouped” format).

Here’s a sample spec:

{
"type": "multibar",
"title": "HIV Mismatch by Clinic",
"x_axis_column": "clinic",
"y_axis_columns": [

{
"column_id": "diagnoses_match_no",
"display": "No match"

},
{

"column_id": "diagnoses_match_yes",
"display": "Match"

}
]

}

25.3.7 Sort Expression

A sort order for the report rows can be specified. Multiple fields, in either ascending or descending order, may be
specified. Example:

Field should refer to report column IDs, not database fields.

[
{
"field": "district",
"order": "DESC"

},
{
"field": "date_of_data_collection",
"order": "ASC"

(continues on next page)

25.3. Report Configurations 155

CommCareHQ Documentation, Release 1.0

(continued from previous page)

}
]

25.3.8 Distinct On

Can be used to limit the rows in a report based on a single column or set of columns. The top most row is picked in
case of duplicates.

This is different from aggregation in sense that this is done after fetching the rows, whereas aggregation is done before
selecting the rows.

This is used in combination with a sort expression to have predictable results.

Please note that the columns used in distinct on clause should also be present in the sort expression as the first set of
columns in the same order.

Pick distinct by a single column

Sort expression should have column1 and then other columns if needed

[
{
"field": "column1",
"order": "DESC"

},
{
"field": "column2",
"order": "ASC"

}
]

and distinct on would be

["column1"]

Pick distinct result based on two columns

Sort expression should have column1 and column2 in same order, More columns can be added after these if needed

[
{
"field": "column1",
"order": "DESC"

},
{
"field": "column2",
"order": "ASC"

}
]

and distinct on would be

156 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

["column1", "column2"]

25.4 Mobile UCR

Mobile UCR is a beta feature that enables you to make application modules and charts linked to UCRs on mobile. It
also allows you to send down UCR data from a report as a fixture which can be used in standard case lists and forms
throughout the mobile application.

The documentation for Mobile UCR is very sparse right now.

25.4.1 Filters

On mobile UCR, filters can be automatically applied to the mobile reports based on hardcoded or user-specific data, or
can be displayed to the user.

The documentation of mobile UCR filters is incomplete. However some are documented below.

Custom Calendar Month

When configuring a report within a module, you can filter a date field by the ‘CustomMonthFilter’. The choice includes
the following options: - Start of Month (a number between 1 and 28) - Period (a number between 0 and n with 0
representing the current month).

Each custom calendar month will be “Start of the Month” to (“Start of the Month” - 1). For example, if the start of the
month is set to 21, then the period will be the 21th of the month -> 20th of the next month.

Examples: Assume it was May 15: Period 0, day 21, you would sync April 21-May 15th Period 1, day 21, you would
sync March 21-April 20th Period 2, day 21, you would sync February 21 -March 20th

Assume it was May 20: Period 0, day 21, you would sync April 21-May 20th Period 1, day 21, you would sync March
21-April 20th Period 2, day 21, you would sync February 21-March 20th

Assume it was May 21: Period 0, day 21, you would sync May 21-May 21th Period 1, day 21, you would sync April
21-May 20th Period 2, day 21, you would sync March 21-April 20th

25.5 Export

A UCR data source can be exported, to back an excel dashboard, for instance. The URL for exporting data takes the
form https://www.commcarehq.org/a/[domain]/configurable_reports/data_sources/export/[data source id]/

The export supports a “$format” parameter which can be any of the following options: html, csv, xlsx, xls. The default
format is csv.

This export can also be filtered to restrict the results returned. The filtering options are all based on the field names:

URL parameter Value Description
{field_name} {exact value} require an exact match
{field_name}-range {start}..{end} return results in range
{field_name}-lastndays {number} restrict to the last n days

25.4. Mobile UCR 157

CommCareHQ Documentation, Release 1.0

This is configured in export_data_source and tested in test_export. It should be pretty straightforward to add
support for additional filter types.

25.5.1 Export example

Let’s say you want to restrict the results to only cases owned by a particular user, opened in the last 90 days, and with
a child between 12 and 24 months old as an xlsx file. The querystring might look like this:

?$format=xlsx&owner_id=48l069n24myxk08hl563&opened_on-lastndays=90&child_age-range=12..24

25.6 Practical Notes

Some rough notes for working with user configurable reports.

25.6.1 Getting Started

The easiest way to get started is to start with sample data and reports.

Create a simple app and submit a few forms. You can then use report builder to create a report. Start at a/DOMAIN/
reports/builder/select_source/ and create a report based on your form, either a form list or form summary.

When your report is created, clicking “Edit” will bring you to the report builder editor. An individual report can be
viewed in the UCR editor by changing the report builder URL, /a/DOMAIN/reports/builder/edit/REPORT_ID/ to
the UCR URL, /a/DOMAIN/configurable_reports/reports/edit/REPORT_ID/. In this view, you can examine
the columns, filters, and aggregation columns that report builder created.

The UCR config UI also includes pages to add new data sources, imports reports, etc., all based at /a/DOMAIN/
configurable_reports/. If you add a new report via the UCR UI and copy in the columns, filters, etc. from a
report builder report, that new report will then automatically open in the UCR UI when you edit it. You can also take
an existing report builder report and set my_report.report_meta.created_by_builder to false to force it to open
in the UCR UI in the future.

Two example UCRs, a case-based UCR for the dimagi domain and a form-based UCR for the gsid domain, are
checked into source code. Their data source specs and report specs are in corehq/apps/userreports/examples/.

The tests are also a good source of documentation for the various filter and indicator formats that are supported.

When editing data sources, you can check the progress of rebuilding using my_datasource.meta.build.finished

25.6.2 Static data sources

As well as being able to define data sources via the UI which are stored in the database you can also define static data
sources which live as JSON documents in the source repository.

These are mainly useful for custom reports.

They conform to a slightly different style:

{
"domains": ["live-domain", "test-domain"],
"config": {

... put the normal data source configuration here
(continues on next page)

158 Chapter 25. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

(continued from previous page)

}
}

Having defined the data source you need to use the static_ucr_data_source_paths extension point to make
CommCare aware of your data source. Now when the static data source pillow is run it will pick up the data source and
rebuild it.

Alternatively, the legacy method is to add the path to the data source file to the STATIC_DATA_SOURCES setting in
settings.py.

Changes to the data source require restarting the pillow which will rebuild the SQL table. Alternately you can use the
UI to rebuild the data source (requires Celery to be running).

25.6.3 Static configurable reports

Configurable reports can also be defined in the source repository. Static configurable reports have the following style:

{
"domains": ["my-domain"],
"data_source_table": "my_table",
"report_id": "my-report",
"config": {

... put the normal report configuration here
}

}

Having defined the report you need to use the static_ucr_report_paths extension point to make CommCare aware
of your report.

Alternatively, the legacy method is to add the path to the data source file to the STATIC_UCR_REPORTS setting in
settings.py.

25.6.4 Custom configurable reports

Sometimes a client’s needs for a rendered report are outside of the scope of the framework. To render the report using a
custom Django template or with custom Excel formatting, define a subclass of ConfigurableReportView and over-
ride the necessary functions. Then include the python path to the class in the field custom_configurable_report
of the static report and don’t forget to include the static report in STATIC_DATA_SOURCES in settings.py.

25.6.5 Extending User Configurable Reports

When building a custom report for a client, you may find that you want to extend UCR with custom functionality. The
UCR framework allows developers to write custom expressions, and register them with the framework. To do so:

1. Define a function that returns an expression object

def custom_expression(spec, evaluation_context):
...

2. Extend the custom_ucr_expressions extension point:

25.6. Practical Notes 159

CommCareHQ Documentation, Release 1.0

from corehq.apps.userreports.extension_points import custom_ucr_expressions

@custom_ucr_expressions.extend()
def ucr_expressions():

return [
('expression_name', 'path.to.custom_expression'),

]

See also:

• CommCare Extension documentation for more details on using extensions.

• custom_ucr_expressions docstring for full extension point details.

• location_type_name: A way to get location type from a location document id.

• location_parent_id: A shortcut to get a location’s parent ID a location id.

• get_case_forms: A way to get a list of forms submitted for a case.

• get_subcases: A way to get a list of subcases (child cases) for a case.

• indexed_case: A way to get an indexed case from another case.

You can find examples of these in practical examples.

25.6.6 Scaling UCR

Profiling data sources

You can use ./manage.py profile_data_source <domain> <data source id> <doc id> to profile a data-
source on a particular doc. It will give you information such as functions that take the longest and number of database
queries it initiates.

Faster Reporting

If reports are slow, then you can add create_index to the data source to any columns that have filters applied to them.

Asynchronous Indicators

If you have an expensive data source and the changes come in faster than the pillow can process them, you can specify
asynchronous: true in the data source. This flag puts the document id in an intermediary table when a change
happens which is later processed by a celery queue. If multiple changes are submitted before this can be processed, a
new entry is not created, so it will be processed once. This moves the bottle neck from kafka/pillows to celery.

The main benefit of this is that documents will be processed only once even if many changes come in at a time. This
makes this approach ideal datasources that don’t require ‘live’ data or where the source documents change very fre-
quently.

It is also possible achieve greater parallelization than is currently available via pillows since multiple Celery workers
can process the changes.

A diagram of this workflow can be found here

160 Chapter 25. User Configurable Reporting

./ucr/examples.html
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/userreports/examples/async_indicator.png

CommCareHQ Documentation, Release 1.0

25.6.7 Inspecting database tables

The easiest way to inspect the database tables is to use the sql command line utility.

This can be done by runnning ./manage.py dbshell or using psql.

The naming convention for tables is: config_report_[domain name]_[table id]_[hash].

In postgres, you can see all tables by typing \dt and use sql commands to inspect the appropriate tables.

25.6. Practical Notes 161

CommCareHQ Documentation, Release 1.0

162 Chapter 25. User Configurable Reporting

CHAPTER

TWENTYSIX

UCR EXAMPLES

This page lists some common examples/design patterns for user configurable reports and CommCare HQ data models.

163

CommCareHQ Documentation, Release 1.0

164 Chapter 26. UCR Examples

CHAPTER

TWENTYSEVEN

DATA SOURCE FILTERS

The following are example filter expressions that are common in data sources.

27.1 Filters on forms

The following filters apply to data sources built on top of forms.

27.1.1 Filter by a specific form type using the XMLNS

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "xmlns"

},
"operator": "eq",
"property_value": "http://openrosa.org/formdesigner/my-registration-form"

}

27.1.2 Filter by a set of form types using the XMLNS

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "xmlns"

},
"operator": "in",
"property_value": [

"http://openrosa.org/formdesigner/my-registration-form",
"http://openrosa.org/formdesigner/my-follow-up-form",
"http://openrosa.org/formdesigner/my-close-form"

]
}

165

CommCareHQ Documentation, Release 1.0

27.2 Filters on cases

The following filters apply to data sources built on top of cases.

27.2.1 Filter by a specific case type

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "type"

},
"operator": "eq",
"property_value": "child"

}

27.2.2 Filter by multiple case types

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "type"

},
"operator": "in",
"property_value": ["child", "mother"]

}

27.2.3 Filter by only open cases

NOTE: this should be changed to use boolean datatypes once those exist.

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "closed",
"datatype": null

},
"operator": "eq",
"property_value": false

}

166 Chapter 27. Data source filters

CHAPTER

TWENTYEIGHT

DATA SOURCE INDICATORS

28.1 Count every contributing row (form or case)

{
"type": "expression",
"expression": {

"type": "constant",
"constant": 1

},
"column_id": "count",
"datatype": "integer",
"display_name": "count of forms"

}

28.2 Save a form property directly to a table

The following indicator stubs show how to save various properties to a data source. These can be copied directly into
data sources or modified to suit specific apps/forms.

28.2.1 Submission date (received on)

This saves the submission date as a date object. If you want to include the time change the datatypes to "datetime".

{
"type": "expression",
"expression": {

"type": "property_name",
"property_name": "received_on",
"datatype": "date"

},
"display_name": "Submission date",
"datatype": "date",
"column_id": "received_on"

}

167

CommCareHQ Documentation, Release 1.0

28.2.2 User ID

{
"display_name": "User ID",
"datatype": "string",
"expression": {

"type": "property_path",
"property_path": [

"form",
"meta",
"userID"

]
},
"is_primary_key": false,
"transform": {},
"is_nullable": true,
"type": "expression",
"column_id": "user_id"

}

28.2.3 A text or choice property

This is the same type of indicator that should be used for typical Impact 123 indicators. In the example below, the
indicator is inside a form group question called “impact123”.

{
"type": "expression",
"expression": {

"type": "property_path",
"property_path": ["form", "impact123", "cc_impact_1"]

},
"column_id": "impact1",
"display_name": "Impact 1",
"datatype": "string"

}

28.3 Related doc lookups

28.3.1 Get an owner name - whether it’s a user, group or location

{
"datatype":"string",
"type":"expression",
"column_id":"owner_name",
"expression":{

"test":{
"operator":"eq",
"expression":{

"value_expression":{
(continues on next page)

168 Chapter 28. Data source indicators

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"type":"property_name",
"property_name":"doc_type"

},
"type":"related_doc",
"related_doc_type":"Group",
"doc_id_expression":{

"type":"property_name",
"property_name":"owner_id"

}
},
"type":"boolean_expression",
"property_value":"Group"

},
"expression_if_true":{

"value_expression":{
"type":"property_name",
"property_name":"name"

},
"type":"related_doc",
"related_doc_type":"Group",
"doc_id_expression":{

"type":"property_name",
"property_name":"owner_id"

}
},
"type":"conditional",
"expression_if_false":{

"type":"conditional",
"test":{

"operator":"eq",
"expression":{

"value_expression":{
"type":"property_name",
"property_name":"doc_type"

},
"type":"related_doc",
"related_doc_type":"CommCareUser",
"doc_id_expression":{

"type":"property_name",
"property_name":"owner_id"

}
},
"type":"boolean_expression",
"property_value":"CommCareUser"

},
"expression_if_true":{

"value_expression":{
"type":"property_name",
"property_name":"username"

},
"type":"related_doc",
"related_doc_type":"CommCareUser",

(continues on next page)

28.3. Related doc lookups 169

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"doc_id_expression":{
"type":"property_name",
"property_name":"owner_id"

}
},
"expression_if_false":{

"value_expression":{
"type":"property_name",
"property_name":"name"

},
"type":"related_doc",
"related_doc_type":"Location",
"doc_id_expression":{

"type":"property_name",
"property_name":"owner_id"

}
}

}
}

}

28.3.2 Get a case property from a form that modifies the case

The following expression looks up a case name from a form that references that case.

To lookup a different property, or for more complex form/case relationships and advanced modules just adjust the
property paths.

{
"type":"related_doc",
"related_doc_type":"CommCareCase",
"doc_id_expression":{

"type": "property_path",
"property_path": [

"form",
"case",
"@case_id"

]
},
"value_expression":{

"type":"property_path",
"property_path": [

"name"
]

}
}

Note: this is an example expression. To use it in a data source just wrap it in a column.

170 Chapter 28. Data source indicators

CommCareHQ Documentation, Release 1.0

28.3.3 Get a custom user data property from a form submission

{
"datatype":"string",
"type":"expression",
"column_id":"confirmed_referral_target",
"expression":{

"type":"related_doc",
"related_doc_type":"CommCareUser",
"doc_id_expression":{

"type": "property_path",
"property_path": [

"form",
"meta",
"userID"

]
},
"value_expression":{

"type":"property_path",
"property_path": [

"user_data",
"confirmed_referral_target"

]
}

}
}

28.4 Getting the parent case ID from a case

{
"type": "nested",
"argument_expression": {

"type": "array_index",
"array_expression": {

"type": "property_name",
"property_name": "indices"

},
"index_expression": {

"type": "constant",
"constant": 0

}
},
"value_expression": {

"type": "property_name",
"property_name": "referenced_id"

}
}

28.4. Getting the parent case ID from a case 171

CommCareHQ Documentation, Release 1.0

28.5 Getting the location type from a location doc id

location_id_expression can be any expression that evaluates to a valid location id.

{
"datatype":"string",
"type":"expression",
"expression": {

"type": "location_type_name",
"location_id_expression": {

"type": "property_name",
"property_name": "_id"

}
},
"column_id": "district"

}

28.6 Getting a location’s parent ID

location_id_expression can be any expression that evaluates to a valid location id.

{
"type":"expression",
"expression": {

"type": "location_parent_id",
"location_id_expression": {

"type": "property_name",
"property_name": "location_id"

}
},
"column_id": "parent_location"

}

172 Chapter 28. Data source indicators

CHAPTER

TWENTYNINE

BASE ITEM EXPRESSIONS

29.1 Emit multiple rows (one per non-empty case property)

In this example we take 3 case properties and save one row per property if it exists.

{
"type": "iterator",
"expressions": [

{
"type": "property_name",
"property_name": "p1"

},
{

"type": "property_name",
"property_name": "p2"

},
{

"type": "property_name",
"property_name": "p3"

},
],
"test": {

"type": "not",
"filter": {

"type": "boolean_expression",
"expression": {

"type": "identity",
},
"operator": "in",
"property_value": ["", null]

}
}

}

173

CommCareHQ Documentation, Release 1.0

29.2 Emit multiple rows of complex data

In this example we take 3 case properties and emit the property name along with the value (only if non-empty). Note
that the test must also change in this scenario.

{
"type": "iterator",
"expressions": [

{
"type": "dict",
"properties": {

"name": "p1",
"value": {

"type": "property_name",
"property_name": "p1"

}
}

},
{

"type": "dict",
"properties": {

"name": "p2",
"value": {

"type": "property_name",
"property_name": "p2"

}
}

},
{

"type": "dict",
"properties": {

"name": "p3",
"value": {

"type": "property_name",
"property_name": "p3"

}
}

}
],
"test": {

"type": "not",
"filter": {

"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "value"

},
"operator": "in",
"property_value": ["", null],

}
}

}

174 Chapter 29. Base Item Expressions

CommCareHQ Documentation, Release 1.0

29.3 Evaluator Examples

29.3.1 Age in years to age in months

In the above example, age_in_years can be replaces with another expression to get the property from the doc

{
"type": "evaluator",
"statement": "30.4 * age_in_years",
"context_variables": {

"age_in_years": {
"type": "property_name",
"property_name": "age"

}
}

}

This will lookup the property age and substituite its value in the statement

29.3.2 weight_gain example

{
"type": "evaluator",
"statement": "weight_2 - weight_1",
"context_variables": {

"weight_1": {
"type": "property_name",
"property_name": "weight_at_birth"

},
"weight_2": {

"type": "property_name",
"property_name": "weight_at_1_year"

}
}

}

This will return value of weight_at_1_year - weight_at_birth

29.3.3 diff_seconds example

"expression": {
"type": "evaluator",
"statement": "timedelta_to_seconds(time_end - time_start)",
"context_variables": {

"time_start": {
"datatype": "datetime",
"type": "property_path",
"property_path": [

"form",
"meta",

(continues on next page)

29.3. Evaluator Examples 175

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"timeStart"
]

},
"time_end": {

"datatype": "datetime",
"type": "property_path",
"property_path": [

"form",
"meta",
"timeEnd"

]
}

}
}

This will return the difference in seconds between two times (i.e. start and end of form)

29.3.4 Date format

These examples using Python f-strings to format the dates.

Convert a datetime to a formatted string
2022-01-01T15:32:54.109971Z 15:32 on 01 Jan 2022

{
"type": "evaluator",
"statement": "f'{date:%H:%M on %d %b %Y}'",
"context_variables": {

"date": {
"type": "property_name",
"property_name": "my_datetime",
"datatype": "datetime",

}
}

}

Convert a datetime to show only 3 digits in the microseconds field
2022-01-01T15:32:54.109971Z 2022-01-01T15:32:54.110Z

{
"type": "evaluator",
"statement": "f'{date:%Y-%m-%dT%H:%M:%S}.' + '%03d' % round(int(f'{date:%f}')/1000)␣

→˓+ 'Z'",
"context_variables": {

"date": {
"type": "property_name",
"property_name": "my_datetime",
"datatype": "datetime",

}
}

}

176 Chapter 29. Base Item Expressions

https://docs.python.org/3/reference/lexical_analysis.html#f-strings

CommCareHQ Documentation, Release 1.0

29.4 Getting forms submitted for a case

{
"type": "get_case_forms",
"case_id_expression": {

"type": "property_name",
"property_name": "case_id"

}
}

29.5 Getting forms submitted from specific forms for a case

{
"type": "get_case_forms",
"case_id_expression": {

"type": "property_name",
"property_name": "case_id"

},
"xmlns": [

"http://openrosa.org/formdesigner/D8EED5E3-88CD-430E-984F-45F14E76A551",
"http://openrosa.org/formdesigner/F1B73934-8B70-4CEE-B462-3E4C81F80E4A"

]
}

29.6 Getting the related case from a case

{
"type": "indexed_case",
"case_expression": {

"type": "identity",
"comment": "This just means the current document for a case based datasource"

},
"index": "parent"

}

To access a specific property from the related case, you can do something like:

{
"type": "nested",
"argument_expression": {

"type": "indexed_case",
"case_expression": {

"type": "identity",
"comment": "This just means the current document for a case based UCR"

},
"index": "parent"

},
"value_expression": {

(continues on next page)

29.4. Getting forms submitted for a case 177

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"type": "property_name",
"property_name": "some_case_property"

}
}

29.7 Filter, Map, Reduce, Flatten and Sort expressions

29.7.1 Getting number of forms of a particular type

{
"type": "reduce_items",
"items_expression": {

"type": "filter_items",
"items_expression": {
"type": "get_case_forms",
"case_id_expression": {"type": "property_name", "property_name": "case_id"}
},
"filter_expression": {

"type": "boolean_expression",
"operator": "eq",
"expression": {"type": "property_name", "property_name": "xmls"},
"property_value": "gmp_xmlns"

}
},
"aggregation_fn": "count"

}

It can be read as reduce(filter(get_case_forms))

29.7.2 Getting latest form property

{
"type": "nested",
"argument_expression": {

"type": "reduce_items",
"items_expression": {

"type": "sort_items",
"items_expression": {

"type": "filter_items",
"items_expression": {

"type": "get_case_forms",
"case_id_expression": {"type": "property_name", "property_name":

→˓"case_id"}
},
"filter_expression": {

"type": "boolean_expression",
"operator": "eq",
"expression": {"type": "property_name", "property_name": "xmls"},

(continues on next page)

178 Chapter 29. Base Item Expressions

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"property_value": "gmp_xmlns"
}

},
"sort_expression": {"type": "property_name", "property_name": "received_on"}

},
"aggregation_fn": "last_item"

},
"value_expression": {

"type": "property_name",
"property_name": "weight"

}
}

This will return weight form-property on latest gmp form (xmlns is gmp_xmlns).

29.7. Filter, Map, Reduce, Flatten and Sort expressions 179

CommCareHQ Documentation, Release 1.0

180 Chapter 29. Base Item Expressions

CHAPTER

THIRTY

REPORT EXAMPLES

30.1 Report filters

30.1.1 Date filter for submission date

This assumes that you have saved a "received_on" column from the form into the data source.

{
"type": "date",
"slug": "received_on",
"field": "received_on",
"display": "Submission date",
"required": false

}

30.2 Report columns

30.2.1 Creating a date column for months

The following makes a column for a "received_on" data source column that will aggregate by the month received.

{
"type": "aggregate_date",
"column_id": "received_on",
"field": "received_on",
"display": "Month"

}

181

CommCareHQ Documentation, Release 1.0

30.2.2 Expanded columns

The following snippet creates an expanded column based on a column that contains a fixed number of choices. This is
the default column setup used in Impact 123 reports.

{
"type": "expanded",
"field": "impact1",
"column_id": "impact1",
"display": "impact1"

}

182 Chapter 30. Report examples

CHAPTER

THIRTYONE

CHARTS

31.1 Impact 123 grouped by date

This assumes a month-based date column and an expanded impact indicator column, as described above.

{
"y_axis_columns": [

"impact1-positive",
"impact1-negative",
"impact1-unknown"

],
"x_axis_column": "received_on",
"title": "Impact1 by Submission Date",
"display_params": {},
"aggregation_column": null,
"type": "multibar"

}

183

CommCareHQ Documentation, Release 1.0

184 Chapter 31. Charts

CHAPTER

THIRTYTWO

UCR FAQ

32.1 What is UCR?

UCR stands for ‘User Configurable Report’. They are user-generated reports, created within HQ via Reports > Create
New Report

32.2 Report Errors

The database table backing your report does not exist yet. Please wait while the report
is populated.

This problem is probably occurring for you locally. On staging and production environments, report tables are generated
upon save by an asynchronous Celery task. Even with CELERY_TASK_ALWAYS_EAGER=True in settings.py, the
code currently will not generate these synchronously. You can manually generate them via the following management
command:

./manage.py rebuild_tables_by_domain <domain-name> --initiated_by <HQ_user_id>

185

CommCareHQ Documentation, Release 1.0

186 Chapter 32. UCR FAQ

CHAPTER

THIRTYTHREE

MESSAGING IN COMMCARE HQ

The term “messaging” in CommCare HQ commonly refers to the set of frameworks that allow the following types of
use cases:

• sending SMS to contacts

• receiving SMS from contacts and performing pre-configured actions based on the content

• time-based and rule-based schedules to send messages to contacts

• creating alerts based on configurable criteria

• sending outbound calls to contacts and initiating an Interactive Voice Response (IVR) session

• collecting data via SMS surveys

• sending email alerts to contacts

The purpose of this documentation is to show how all of those use cases are performed technically by CommCare
HQ. The topics below cover this material and should be followed in the order presented below if you have no prior
knowledge of the messaging frameworks used in CommCare HQ.

33.1 Messaging Definitions

33.1.1 General Messaging Terms

SMS Gateway
a third party service that provides an API for sending and receiving SMS

Outbound SMS
an SMS that is sent from the SMS Gateway to a contact

Inbound SMS
an SMS that is sent from a contact to the SMS Gateway

Mobile Terminating (MT) SMS
an outbound SMS

Mobile Originating (MO) SMS
an inbound SMS

Dual Tone Multiple Frequencies (DTMF) tones:
the tones made by a telephone when pressing a button such as number 1, number 2, etc.

Interactive Voice Response (IVR) Session:
a phone call in which the user is prompted to make choices using DTMF tones and the flow of the
call can change based on those choices

187

CommCareHQ Documentation, Release 1.0

IVR Gateway
a third party service that provides an API for handling IVR sessions

International Format (also referred to as E.164 Format) for a Phone Number:
a format for a phone number which makes it so that it can be reached from any other country; the
format typically starts with +, then the country code, then the number, though there may be some
subtle operations to perform on the number before putting into international format, such as removing
a leading zero

SMS Survey
a way of collecting data over SMS that involves asking questions one SMS at a time and waiting for
a contact’s response before sending the next SMS

Structured SMS
a way for collecting data over SMS that involves collecting all data points in one SMS rather than
asking one question at a time as in an SMS Survey; for example: “REGISTER Joe 25” could be one
way to define a Structured SMS that registers a contact named Joe whose age is 25.

33.1.2 Messaging Terms Commonly Used in CommCare HQ

SMS Backend
the code which implements the API of a specific SMS Gateway

IVR Backend
the code which implements the API of a specific IVR Gateway

Two-way Phone Number
a phone number that the system has tied to a single contact in a single domain, so that the system can
not only send oubound SMS to the contact, but the contact can also send inbound SMS and have the
system process it accordingly; the system currently only considers a number to be two-way if there
is a corehq.apps.sms.models.PhoneNumber entry for it that has verified = True

One-way Phone Number
a phone number that has not been tied to a single contact, so that the system can only send outbound
SMS to the number; one-way phone numbers can be shared across many contacts in many domains,
but only one of those numbers can be a two-way phone number

33.2 Contacts

A contact is a single person that we want to interact with through messaging. In CommCare HQ, at the
time of writing, contacts can either be users (CommCareUser, WebUser) or cases (CommCareCase).

In order for the messaging frameworks to interact with a contact, the contact must implement the
corehq.apps.sms.mixin.CommCareMobileContactMixin.

Contacts have phone numbers which allows CommCare HQ to interact with them. All phone numbers for
contacts must be stored in International Format, and the frameworks always assume a phone number is
given in International Format.

Regarding the + sign before the phone number, the rule of thumb is to never store the + when storing phone
numbers, and to always display it when displaying phone numbers.

188 Chapter 33. Messaging in CommCare HQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/mixin.py

CommCareHQ Documentation, Release 1.0

33.2.1 Users

A user’s phone numbers are stored as the phone_numbers attribute on the CouchUser class, which is just
a list of strings.

At the time of writing, WebUsers are only allowed to have one-way phone numbers.

CommCareUsers are allowed to have two-way phone numbers, but in order to have a phone number be
considered to be a two-way phone number, it must first be verified. The verification process is initiated on
the edit mobile worker page and involves sending an outbound SMS to the phone number and having it be
acknowledged by receiving a validated response from it.

33.2.2 Cases

At the time of writing, cases are allowed to have only one phone number. The following case properties
are used to define a case’s phone number:

contact_phone_number
the phone number, in International Format

contact_phone_number_is_verified
must be set to 1 in order to consider the phone number a two-way phone number; the point here is
that the health worker registering the case should verify the phone number and the form should set
this case property to 1 if the health worker has identified the phone number as verified

If two cases are registered with the same phone number and both set the verified flag to 1, it will only be
granted two-way phone number status to the case who registers it first.

If a two-way phone number can be granted for the case, a corehq.apps.sms.models.PhoneNumber en-
try with verified set to True is created for it. This happens automatically by running celery task
run_case_update_rules_on_save for a case each time a case is saved.

33.2.3 Future State

Forcing the verification workflows before granting a phone number two-way phone number status has
proven to be challenging for our users. In a (hopefully soon) future state, we will be doing away with all
verification workflows and automatically consider a phone number to be a two-way phone number for the
contact who registers it first.

33.3 Outbound SMS

The SMS framework uses a queuing architecture to make it easier to scale SMS processing power hori-
zontally.

The process to send an SMS from within the code is as follows. The only step you need to do is the first,
and the rest happen automatically.

1. Invoke one of the send_sms* functions found in corehq.apps.sms.api:
send_sms

used to send SMS to a one-way phone number represented as a string

send_sms_to_verified_number
use to send SMS to a two-way phone number represented as a PhoneNumber object

33.3. Outbound SMS 189

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/data_interfaces/tasks.py#L202
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py

CommCareHQ Documentation, Release 1.0

send_sms_with_backend
used to send SMS with a specific SMS backend

send_sms_with_backend_name
used to send SMS with the given SMS backend name which will be resolved to an SMS
backend

2. The framework creates a corehq.apps.sms.models.QueuedSMS object representing the SMS to be
sent.

3. The SMS Queue polling process (python manage.py run_sms_queue), which runs as a supervi-
sor process on one of the celery machines, picks up the QueuedSMS object and passes it to
corehq.apps.sms.tasks.process_sms.

4. process_sms attempts to send the SMS. If an error happens, it is retried up to 2 more times on 5
minute intervals. After 3 total attempts, any failure causes the SMS to be marked with error = True.

5. Whether the SMS was processed successfully or not, the QueuedSMS object is deleted and replaced
by an identical looking corehq.apps.sms.models.SMS object for reporting.

At a deeper level, process_sms performs the following important functions for outbound SMS. To find out
other more detailed functionality provided by process_sms, see the code.

1. If the domain has restricted the times at which SMS can be sent, check those and requeue the SMS
if it is not currently an allowed time.

2. Select an SMS backend by looking in the following order:
• If using a two-way phone number, look up the SMS backend with the name given in the

backend_id property

• If the domain has a default SMS backend specified, use it

• Look up an appropriate global SMS backend by checking the phone number’s prefix against
the global SQLMobileBackendMapping entries

• Use the catch-all global backend (found from the global SQLMobileBackendMapping entry
with prefix = ‘*’)

3. If the SMS backend has configured rate limiting or load balancing across multiple numbers, enforce
those constraints.

4. Pass the SMS to the send() method of the SMS Backend, which is an instance of
corehq.apps.sms.models.SQLSMSBackend.

33.4 Inbound SMS

Inbound SMS uses the same queueing architecture as outbound SMS does.

The entry point to processing an inbound SMS is the corehq.apps.sms.api.incoming function. All SMS
backends which accept inbound SMS call the incoming function.

From there, the following functions are performed at a high level:

1. The framework creates a corehq.apps.sms.models.QueuedSMS object representing the SMS to be
processed.

2. The SMS Queue polling process (python manage.py run_sms_queue), which runs as a supervi-
sor process on one of the celery machines, picks up the QueuedSMS object and passes it to
corehq.apps.sms.tasks.process_sms.

190 Chapter 33. Messaging in CommCare HQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tasks.py

CommCareHQ Documentation, Release 1.0

3. process_sms attempts to process the SMS. If an error happens, it is retried up to 2 more times on 5
minute intervals. After 3 total attempts, any failure causes the SMS to be marked with error = True.

4. Whether the SMS was processed successfully or not, the QueuedSMS object is deleted and replaced
by an identical looking corehq.apps.sms.models.SMS object for reporting.

At a deeper level, process_sms performs the following important functions for inbound SMS. To find out
other more detailed functionality provided by process_sms, see the code.

1. Look up a two-way phone number for the given phone number string.

2. If a two-way phone number is found, pass the SMS on to each inbound SMS handler (defined in
settings.SMS_HANDLERS) until one of them returns True, at which point processing stops.

3. If a two-way phone number is not found, try to pass the SMS on to the SMS handlers that don’t require
two-way phone numbers (the phone verification workflow, self-registration over SMS workflows)

33.5 SMS Backends

We have one SMS Backend class per SMS Gateway that we make available.

SMS Backends are defined by creating a new directory under corehq.messaging.smsbackends, and the
code for each backend has two main parts:

• The outbound part of the backend which is represented by a class that subclasses
corehq.apps.sms.models.SQLSMSBackend

• The inbound part of the backend which is represented by a view that subclasses
corehq.apps.sms.views.IncomingBackendView

33.5.1 Outbound

The outbound part of the backend code is responsible for interacting with the SMS Gateway’s API to send
an SMS.

All outbound SMS backends are subclasses of SQLSMSBackend, and you can’t use a backend until you’ve
created an instance of it and saved it in the database. You can have multiple instances of backends, if for
example, you have multiple accounts with the same SMS gateway.

Backend instances can either be global, in which case they are shared by all projects in CommCare HQ, or
they can belong to a specific project. If belonged to a specific project, a backend can optionally be shared
with other projects as well.

To write the outbound backend code:

1. Create a subclass of corehq.apps.sms.models.SQLSMSBackend and implement the unimplemented
methods:

get_api_id
should return a string that uniquely identifies the backend type (but is shared across
backend instances); we choose to not use the class name for this since class names can
change but the api id should never change; the api id is only used for sms billing to look
up sms rates for this backend type

get_generic_name
a displayable name for the backend

33.5. SMS Backends 191

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/smsbackends
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/views.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py

CommCareHQ Documentation, Release 1.0

get_available_extra_fields
each backend likely needs to store additional information, such as a username and pass-
word for authenticating with the SMS gateway; list those fields here and they will be
accessible via the backend’s config property

get_form_class
should return a subclass of corehq.apps.sms.forms.BackendForm, which should:

• have form fields for each of the fields in get_available_extra_fields, and

• implement the gateway_specific_fields property, which should return a crispy forms
rendering of those fields

send
takes a corehq.apps.sms.models.QueuedSMS object as an argument and is respon-
sible for interfacing with the SMS Gateway’s API to send the SMS; if you want
the framework to retry the SMS, raise an exception in this method, otherwise if
no exception is raised the framework takes that to mean the process was success-
ful. Unretryable error responses may be recorded on the message object with
msg.set_gateway_error(message) where message is the error message or code returned
by the gateway.

2. Add the backend to settings.HQ_APPS and settings.SMS_LOADED_SQL_BACKENDS

3. Run ./manage.py makemigrations sms; Django will just create a proxy model for the backend model,
but no database changes will occur

4. Add an outbound test for the backend in corehq.apps.sms.tests.test_backends. This will test that the
backend is reachable by the framework, but any testing of the direct API connection with the gateway
must be tested manually.

Once that’s done, you should be able to create instances of the backend by navigating to Messaging ->
SMS Connectivity (for domain-level backend instances) or Admin -> SMS Connectivity and Billing (for
global backend instances). To test it out, set it as the default backend for a project and try sending an SMS
through the Compose SMS interface.

Things to look out for:

• Make sure you use the proper encoding of the message when you implement the send() method. Some
gateways are picky about the encoding needed. For example, some require everything to be UTF-8.
Others might make you choose between ASCII and Unicode. And for the ones that accept Unicode,
you might need to sometimes convert it to a hex representation. And remember that get/post data
will be automatically url-encoded when you use python requests. Consult the documentation for the
gateway to see what is required.

• The message limit for a single SMS is 160 7-bit structures. That works out to 140 bytes, or 70 words.
That means the limit for a single message is typically 160 GSM characters, or 70 Unicode characters.
And it’s actually a little more complicated than that since some simple ASCII characters (such as ‘{’)
take up two GSM characters, and each carrier uses the GSM alphabet according to language.

So the bottom line is, it’s difficult to know whether the given text will fit in one SMS message or
not. As a result, you should find out if the gateway supports Concatenated SMS, a process which
seamlessly splits up long messages into multiple SMS and stiches them back up without you having
to do any additional work. You may need to have the gateway enable a setting to do this or include
an additional parameter when sending SMS to make this work.

• If this gateway has a phone number that people can reply to (whether a long code or short code),
you’ll want to add an entry to the sms.Phoneblacklist model for the gateway’s phone number so that
the system won’t allow sending SMS to this number as a precaution. You can do so in the Django
admin, and you’ll want to make sure that send_sms and can_opt_in are both False on the record.

192 Chapter 33. Messaging in CommCare HQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/forms.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tests/test_backends.py

CommCareHQ Documentation, Release 1.0

33.5.2 Inbound

The inbound part of the backend code is responsible for exposing a view which implements the API that
the SMS Gateway expects so that the gateway can connect to CommCare HQ and notify us of inbound
SMS.

To write the inbound backend code:

1. Create a subclass of corehq.apps.sms.views.IncomingBackendView, and implement the unimple-
mented property:

backend_class
should return the subclass of SQLSMSBackend that was written above

2. Implement either the get() or post() method on the view based on the gateway’s API. The only re-
quirement of the framework is that this method call the corehq.apps.sms.api.incoming function, but
you should also:

• pass self.backend_couch_id as the backend_id kwarg to incoming()

• if the gateway gives you a unique identifier for the SMS in their system, pass that identifier as
the backend_message_id kwarg to incoming(); this can help later with debugging

3. Create a url for the view. The url pattern should accept an api key and look something like:
r’^sms/(?P<api_key>[w-]+)/$’ . The API key used will need to match the inbound_api_key of a
backend instance in order to be processed.

4. Let the SMS Gateway know the url to connect to, including the API Key. To get the API Key,
look at the value of the inbound_api_key property on the backend instance. This value is generated
automatically when you first create a backend instance.

What happens behind the scenes is as follows:

1. A contact sends an inbound SMS to the SMS Gateway

2. The SMS Gateway connects to the URL configured above.

3. The view automatically looks up the backend instance by api key and rejects the request if one is not
found.

4. Your get() or post() method is invoked which parses the parameters accordingly and passes the infor-
mation to the inbound incoming() entry point.

5. The Inbound SMS framework takes it from there as described in the Inbound SMS section.

NOTE: The api key is part of the URL because it’s not always easy to make the gateway send us an extra
arbitrary parameter on each inbound SMS.

33.5.3 Rate Limiting

You may want (or need) to limit the rate at which SMS get sent from a given backend instance. To do so,
just override the get_sms_rate_limit() method in your SQLSMSBackend, and have it return the maximum
number of SMS that can be sent in a one minute period.

33.5. SMS Backends 193

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/views.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py

CommCareHQ Documentation, Release 1.0

33.5.4 Load Balancing

If you want to load balance the Outbound SMS traffic automatically across multiple phone numbers, do
the following:

1. Make your BackendForm subclass the corehq.apps.sms.forms.LoadBalancingBackendFormMixin

2. Make your SQLSMSBackend subclass the corehq.apps.sms.models.PhoneLoadBalancingMixin

3. Make your SQLSMSBackend’s send method take a orig_phone_number kwarg. This will be the
phone number to use when sending. This is always sent to the send() method, even if there is just
one phone number to load balance over.

From there, the framework will automatically handle managing the phone numbers through the create/edit
gateway UI and balancing the load across the numbers when sending. When choosing the originating
phone number, the destination number is hashed and that hash is used to choose from the list of load
balancing phone numbers, so that a recipient always receives messages from the same originating number.

If your backend uses load balancing and rate limiting, the framework applies the rate limit to each phone
number separately as you would expect.

33.5.5 Backend Selection

There’s also an Automatic Choose option, which selects a backend for each message based on the phone
number’s prefix. Domains can customize their prefix mappings, and there’s a global mapping that HQ will
fall back to if no domain-specific mapping is defined.

These prefix-backend mappings are stored in SQLMobileBackend. The global mappings can
be accessed with [(m.prefix, m.backend) for m in SQLMobileBackendMapping.objects.
filter(is_global=True)]

On production, this currently returns

('27', <SQLMobileBackend: Global Backend 'GRAPEVINE-ZA'>),
('999', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_TEST'>),
('1', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_TWILIO'>),
('258', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_MOZ'>),
('266', <SQLMobileBackend: Global Backend 'GRAPEVINE-ZA'>),
('265', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_TWILIO'>),
('91', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_UNICEL'>),
('268', <SQLMobileBackend: Global Backend 'GRAPEVINE-ZA'>),
('256', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_YO'>),
('*', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_MACH'>)

33.6 Scheduled Messages

The messaging framework supports scheduling messages to be sent on a one-time or recurring basis.

It uses a queuing architecture similar to the SMS framework, to make it easier to scale reminders processing
power horizontally.

An earlier incarnation of this framework was called “reminders”, so some code references to reminders
remain, such as the reminder_queue.

194 Chapter 33. Messaging in CommCare HQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/forms.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py

CommCareHQ Documentation, Release 1.0

33.6.1 Definitions

Scheduled messages are represented in the UI as “broadcasts” and “conditional alerts.”

Broadcasts, represented by the subclasses of corehq.messaging.scheduling.models.abstract.Broadcast, al-
low configuring a recurring schedule to send a particular message type and content to a particular set of
recipients.

Conditional alerts, represented by corehq.apps.data_interfaces.models.AutomaticUpdateRule, contain a
similar recurring schedule but act on cases. They are configured to trigger on when cases meet a set of
criteria, such as a case property changing to a specific value.

The two models share much of their code. This document primarily addresses conditional alerts and will
refer to them as “rules,” as most of the code does.

A rule definition, defines the rules for:

• what criteria cause a reminder to be triggered

• when the message should send once the criteria are fulfilled

• who the message should go to

• on what schedule and frequency the message should continue to be sent

• the content to send

• what causes the rule to stop

33.6.2 Conditional Alerts / Case Update Rules

A conditional alert, represented by corehq.apps.data_interfaces.models.AutomaticUpdateRule, defines an
instance of a rule definition and keeps track of the state of the rule instance throughout its lifetime.

For example, a conditional alert definition may define a rule for sending an SMS to a case of type patient,
and sending an SMS appointment reminder to the case 2 days before the case’s appointment_date case
property.

As soon as a case is created or updated in the given project to meet the criteria of having type patient
and having an appointment_date, the framework will create a reminder instance to track it. After the
message is sent 2 days before the appointment_date, the rule instance is deactivated to denote that it
has completed the defined schedule and should not be sent again.

In order to keep messaging responsive to case changes, every time a case is saved, the
corehq.messaging.tasks.sync_case_for_messaging function is called to handle any changes. This is con-
trolled via case-pillow.

Similarly, any time a rule is updated, a corehq.messaging.tasks.run_messaging_rule task is spawned to
rerun it against all cases in the project.

The aim of the framework is to always be completely responsive to all changes. So in the example above, if
a case’s appointment_date changes before the appointment reminder is actually sent, the framework will
update the schedule instance (more on these below) automatically in order to reflect the new appointment
date. And if the appointment reminder went out months ago but a new appointment_date value is given
to the case for a new appointment, the same instance is updated again to reflect a new message that must
go out.

Similarly, if the rule definition is updated to use a different case property other than appointment_date,
all existing schedule instances are deleted and any new ones are created if they meet the criteria.

33.6. Scheduled Messages 195

https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/models/abstract.py
http://github.com/dimagi/commcare-hq/blob/master/corehq/apps/data_interfaces/models.py
http://github.com/dimagi/commcare-hq/blob/master/corehq/apps/data_interfaces/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py

CommCareHQ Documentation, Release 1.0

33.6.3 Lifecycle of a Rule

As mentioned above, whe a rule is changed, all cases of the relevant type in the domain are re-processed.
The steps of this process are as follows:

1. When a conditional alert is created or activated, a corehq.messaging.tasks.initiate_messaging_rule_run
task is spawned.

2. This locks the rule, so that it cannot be edited from the UI, and spawns a
corehq.messaging.tasks.run_messaging_rule task.

3. This task spawns a corehq.messaging.tasks.sync_case_for_messaging_rule task for every case of the
rule’s case type. It also adds a corehq.messaging.tasks.set_rule_complete task to unlock the rule
when all of the sync_case tasks are finished.

4. This task calls corehq.apps.data_interfaces.models.AutomaticUpdateRule.run_rule on its case.

5. run_rule checks whether or not the case meets the rule’s criteria and acts ac-
cordingly. When the case matches, this calls run_actions_when_case_matches
and then when_case_matches. Conditional alert actions use
CreateScheduleInstanceActionDefinition which implements when_case_matches
to call corehq.messaging.scheduling.tasks.refresh_case_alert_schedule_instances or
corehq.messaging.scheduling.tasks.refresh_case_timed_schedule_instances depending on whether
the rule is immediate or scheduled.

6. The refresh functions act on subclasses of corehq.messaging.scheduling.tasks.ScheduleInstanceRefresher,
which create, update, and delete “schedule instance” objects, which are subclasses of
corehq.messaging.scheduling.scheduling_partitioned.models.ScheduleInstance. These sched-
ule instances track their schedule, recipients, and state relating to their next event. They are
processed by a queue (see next section).

33.6.4 Queueing

All of the schedule instances in the database represent the queue of messages that should be sent. The way
a schedule instance is processed is as follows:

1. The polling process (python manage.py queue_schedule_instances), which runs as a super-
visor process on one of the celery machines, constantly polls for schedules that should be processed
by querying for schedule instances that have a next_event_due property that is in the past.

2. Once a schedule instance that needs to be processed has been identified, the framework
spawns one of several tasks from corehq.messaging.scheduling.tasks to handle it. These
tasks include handle_alert_schedule_instance, handle_timed_schedule_instance,
handle_case_alert_schedule_instance, and handle_case_timed_schedule_instance.

3. The handler looks at the schedule instances and instructs it to 1) take the appropriate action that
has been configured (for example, send an sms), and 2) update the state of the instance so that it
gets scheduled for the next action it must take based on the reminder definition. This is handled by
corehq.messaging.scheduling.scheduling_partitioned.models.ScheduleInstance.handle_current_event

A second queue (python manage.py run_sms_queue), which is set up similarly on each celery machine
that consumes from the reminder_queue,handles the sending of messages.

196 Chapter 33. Messaging in CommCare HQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py
https://github.com/dimagi/commcare-hq/blob/7e7c4af896cd0eeeb747bb19cc663741189d23d6/corehq/apps/data_interfaces/models.py#L310
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/scheduling_partitioned/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py
https://github.com/dimagi/commcare-hq/blob/7e7c4af896cd0eeeb747bb19cc663741189d23d6/corehq/messaging/scheduling/scheduling_partitioned/models.py#L354

CommCareHQ Documentation, Release 1.0

33.6.5 Event Handlers

A rule (or broadcast) sends content of one type. At the time of writing, the content a reminder definition
can be configured to send includes:

• SMS

• SMS Survey

• Emails

• Push Notifications

In the case of SMS SurveysSessions, the survey content is defined using a form in an app which is then
played to the recipients over SMS or Whatsapp.

33.7 Keywords

A Keyword (corehq.apps.sms.models.Keyword) defines an action or set of actions to be taken when an
inbound SMS is received whose first word matches the keyword configuration.

Any number of actions can be taken, which include:

• Replying with an SMS or SMS Survey

• Sending an SMS or SMS Survey to another contact or group of contacts

• Processing the SMS as a Structured SMS

Keywords tie into the Inbound SMS framework through the keyword handler
(corehq.apps.sms.handlers.keyword.sms_keyword_handler, see settings.SMS_HANDLERS), and
use the Reminders framework to carry out their action(s).

Behind the scenes, all actions besides processing Structured SMS create a reminder definition to be sent
immediately. So any functionality provided by a reminder definition can be added to be supported as a
Keyword action.

33.7. Keywords 197

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/handlers/keyword.py

CommCareHQ Documentation, Release 1.0

198 Chapter 33. Messaging in CommCare HQ

CHAPTER

THIRTYFOUR

API

For user facing API documentation see https://help.commcarehq.org/display/commcarepublic/Data+APIs

34.1 Bulk User Resource

Resource name: bulk_user
First version available: v0.5

This resource is used to get basic user data in bulk, fast. This is especially useful if you need to get, say, the name and
phone number of every user in your domain for a widget.

Currently the default fields returned are:

id
email
username
first_name
last_name
phone_numbers

34.1.1 Supported Parameters:

• q - query string

• limit - maximum number of results returned

• offset - Use with limit to paginate results

• fields - restrict the fields returned to a specified set

Example query string:

?q=foo&fields=username&fields=first_name&fields=last_name&limit=100&offset=200

This will return the first and last names and usernames for users matching the query “foo”. This request is for the third
page of results (200-300)

Additional notes:
It is simple to add more fields if there arises a significant use case.

199

https://help.commcarehq.org/display/commcarepublic/Data+APIs

CommCareHQ Documentation, Release 1.0

Potential future plans: Support filtering in addition to querying. Support different types of querying. Add an order_by
option

200 Chapter 34. API

CHAPTER

THIRTYFIVE

COMMCARE FHIR INTEGRATION

CommCare HQ offers three ways of sharing data over FHIR:

1. Data forwarding allows CommCare cases to be sent to remote FHIR services.

2. The FHIR Importer fetches resources from a remote FHIR API and imports them as CommCare cases.

3. The FHIR API exposes CommCare cases as FHIR resources.

FHIR-related functionality is enabled using the “FHIR integration” feature flag.

• Mapping case properties using the Data Dictionary

• Advanced mapping using the Admin interface

35.1 Forwarding Cases to a FHIR API

35.1.1 Overview

CommCare can forward case data to a FHIR API. Patient data can be treated differently from other data, in order to
follow a workflow to avoid duplicating patient records.

This documentation follows the process to set up this kind of integration.

The “FHIR Integration” feature flag will need to be enabled.

35.1.2 Data design

The first step is to determine what data to send.

A spreadsheet offers a good medium for documenting the FHIR resource types that are required, and their properties.

You will want columns for the CommCare case property name, the path to the corresponding value in the FHIR resource
(values can be nested, e.g. “Encounter.subject.reference), and, if they aren’t both strings/text, the data types of the
CommCare and FHIR values.

It is useful to build the spreadsheet alongside the HL7 FHIR reference documentation so that it is easy to look up FHIR
resource property data types and value sets where applicable.

This process will result in a good understanding of what the CommCare app needs to include, question types to use,
and the values for multiple choice questions.

It can also be helpful to have an example of the FHIR resource you need to create. In addition to the case property
values you need, this will also show you other values, like the code system that a code belongs to. e.g.

201

CommCareHQ Documentation, Release 1.0

{
/* case property values: */
"code": "91300",
"display": "Pfizer-BioNTech COVID-19 Vaccine",

/* other values: */
"system": "http://www.ama-assn.org/go/cpt",
"version": "2021"

}

35.1.3 App building

The second step is to build the CommCare app for collecting the data to be sent.

Searching for patients by name

CommCare’s Data Forwarding to FHIR can be configured to register Patients as their cases are registered in CommCare,
and to search for patients, so as to avoid duplication.

You can find these options when setting up data forwarding: Go to “Project Settings” > “Data Forwarding”, under
“Forward Cases to a FHIR API”, click “+ Add a service to forward to”.

Check “Enable patient registration” to register patients. If this is not checked then patients registered in CommCare
will not be created on the remote FHIR service.

Check “Enable patient search” checkbox to search the FHIR service for an existing patient that matches the CommCare
patient. If this is not checked and patient registration is enabled, then CommCare will always create a new patient a
patient is registered in CommCare.

If searching for patients is enabled, CommCare has some additional requirements of an app, regarding patients’ names.

Patient search uses three patient name properties:

• Patient.name[0].given

• Patient.name[0].family

• Patient.name[0].text

It is worth stressing that CommCare only uses the first “name” instance of the Patient resource. If the resource has
multiple values for name, patient search ignores the later values.

Patients are searched for using Patient.name[0].text and their CommCare case ID first. A good approach is for
the patient registration form to join their given name with their family name to determine their full name, and map that
to Patient.name[0].text. (It also makes a good case name.)

Patients are also searched for using “given” and “family” names together. If integration uses patient search, apps should
ensure that at least one of those case properties has a value; ideally both.

202 Chapter 35. CommCare FHIR Integration

CommCareHQ Documentation, Release 1.0

Multiple values from a single question

A few data types in FHIR, like Coding for example, have more than one property that an integrator might want to set
using a single multiple choice question in an app. For Coding, we might want to set the values of both the “code” and
“display” properties.

The way an app can achieve this is to use a separator to split the question’s chosen value. e.g. The
“Johnson & Johnson” option of a “Vaccine type” multiple choice question could have a choice value of
91303|Janssen_COVID-19_Vaccine. The form could have two hidden value questions:

• “vaccine_type_code”, calculated as

substring-before(#form/vaccine_type, '|')

• “vaccine_type_name”, calculated as

replace(substring-after(#form/vaccine_type, '|'), '_', ' ')

A note about using advanced modules

CommCare can send multiple FHIR resources in a single API call. It does this by wrapping them in a transaction
bundle. If the remote FHIR API does not support this, it is possible to build an app that only sends one resource at a
time. This is done by ensuring that each form submission touches no more than one case type that is configured for
FHIR integration.

When a basic module creates a child case, the form submission will include both the existing parent case and the new
child case. If both the parent and child case types are mapped to FHIR resource types, then CommCare will send both
resources in a bundle.

We can use an advanced module for creating child cases. They allow us to limit form submissions to only include the
new child case.

It is worth stressing that this is not normally necessary, but it may be useful to know that a CommCare app can be built
in such a way that it sends only one FHIR resource at a time.

35.1.4 Mapping using the Data Dictionary

CommCare maps case types to FHIR resource types using the Data Dictionary. See Mapping case properties using the
Data Dictionary.

35.1.5 Mapping using the Admin interface

More advanced mapping is done using the Admin interface. See Advanced mapping using the Admin interface.

35.1. Forwarding Cases to a FHIR API 203

CommCareHQ Documentation, Release 1.0

35.1.6 Testing

App builders and integrators can check the integration as the app is being built, and the case properties are being
mapped to FHIR resource properties. The following command starts a HAPI FHIR Docker container:

$ docker run -it -p 8425:8080 smartonfhir/hapi-5:r4-synthea

For a cloud-based environment, a public HAPI FHIR server is available at https://hapi.fhir.org/ for testing. (Do not
sent PHI to a public server.)

The FHIR API base URL for the Docker container will be http://localhost:8425/hapi-fhir-jpaserver/
fhir/. For the public HAPI FHIR server it is http://hapi.fhir.org/baseR4.

In CommCare HQ, navigate to “Project Settings” > “Connection Settings” > “Add Connection Settings” to add an entry
for the HAPI FHIR instance.

Then under “Project Settings” > “Data Forwarding” > “Forward Cases to a FHIR API”, add a service. Select the HAPI
FHIR server. You can check “Enable patient search” to test this feature. If you leave it unchecked, CommCare will
register a new FHIR Patient for every CommCare client case you create, without searching for an existing Patient.

With data forwarding set up, repeat the following steps to test the app and data mapping:

1. Complete a form using your app.

2. Check “Remote API Logs” to see what requests were made.

3. Select a request to see the request and response details.

4. Search for the corresponding resource in HAPI FHIR to confirm the result.

Testing as the app is built catches problems early, and increases confidence in the app and the integration.

204 Chapter 35. CommCare FHIR Integration

https://hapi.fhir.org/

CommCareHQ Documentation, Release 1.0

35.2 Importing cases from a remote FHIR service

35.2.1 Overview

CommCare can poll a remote FHIR service, and import resources as new CommCare cases, or update existing ones.

There are three different strategies available to import resources of a particular resource type:

1. Import all of them.

2. Import some of them based on a search filter.

3. Import only the ones that are referred to by resources of a different resource type.

The first two strategies are simple enough. An example of the third strategy might be if we want CommCare to import
ServiceRequests (i.e. referrals) from a remote FHIR service, and we want to import only the Patients that those referrals
are for.

CommCare can import only those Patients, and also create parent-child case relationships linking a ServiceRequest as
a child case of the Patient.

35.2.2 Configuring a FHIRImportConfig

Currently, all configuration is managed via Django Admin (except for adding Connection Settings).

Warning: Django Admin cannot filter select box values by domain. Name your Connection Setting with the name
of your domain so that typing the domain name in the select box will find it fast.

In Django Admin, navigate to FHIR > FHIR Import Configs. If you have any FHIRImportConfig instances, they will
be listed there, and you can filter by domain. To add a new one, click “Add FHIR Import Config +”.

The form is quite straight forward. You will need to provide the ID of a mobile worker in the “Owner ID” field. All
cases that are imported will be assigned to this user.

This workflow will not scale for large projects. When such a project comes up, we have planned for two approaches,
and will implement one or both based on the project’s requirements:

1. Set the owner to a user, group or location.

2. Assign a FHIRImportConfig to a CommCare location, and set ownership to the mobile worker at that location.

35.2.3 Mapping imported FHIR resource properties

Resource properties are mapped via the Admin interface using ValueSource definitions, similar to Advanced mapping
using the Admin interface for data forwarding and the FHIR API. But there are a few important differences:

The first difference is that FHIRRepeater and the FHIR API use FHIRResourceType instances (rendered as “FHIR Re-
source Types” in Django Admin) to configure mapping; FHIRImportConfig uses FHIRImportResourceType instances
(“FHIR Import Resource Types”).

To see what this looks like, navigate to FHIR > FHIR Importer Resource Types, and click “Add FHIR Importer Resource
Type”.

Select the FHIR Import Config, set the name of the FHIR resource type, and select the case type.

35.2. Importing cases from a remote FHIR service 205

CommCareHQ Documentation, Release 1.0

Note: The resource types you can import are not limited to the resource types that can be managed using the Data
Dictionary. But if you want to send the same resources back to FHIR when they are modified in CommCare, then you
will either need to stick to the Data Dictionary FHIR resource types limitation, or add the resource type you want to
the list in corehq/motech/fhir/const.py.)

The “Import related only” checkbox controls that third import strategy mentioned earlier.

“Search params” is a dictionary of search parameters and their values to filter the resources to be imported. Reference
documentation for the resource type will tell you what search parameters are available. (e.g. Patient search parameters)

“Import related only” and the “Search params” are applied together, to allow you to filter related resources.

There is a second important difference between FHIRImportResourceType and FHIRResourceType: With FHIRRe-
sourceType, the ValueSource configurations are used for building a FHIR resource. With FHIRImportResourceType
they are used for navigating a FHIR resource.

So FHIRResourceType might include ValueSource configs for setting a Patient’s phone number. They might look like
this:

{
"jsonpath":"$.telecom[0].system",
"value": "phone"

}

{
"jsonpath":"$.telecom[0].value",
"case_property": "phone_number"

}

When we are navigating an imported resource to find the value of the Patient’s phone number, we don’t know whether
it will be the first item in the “telecom” list. Instead, we search the “telecom” list for the item whose “system” is set to
“phone”. That is defined like this:

{
"jsonpath":"$.telecom[?system='phone'].value",
"case_property": "phone_number"

}

The third difference is that although the mappings will look the same for the most part, they may map to different case
properties. This is because we have found that projects often want a mobile worker to check some of the imported
values before overwriting existing values on the case. It is wise to confirm with the delivery team how to treat case
properties that can be edited.

35.2.4 Configuring related resources

If a FHIR Importer resource type has “Import related only” checked, we need to configure how the resource type is
related.

Navigate to FHIR > JSON Path to resource types, and click “Add JSON Path to resource type”.

A ServiceRequest.subject is a reference to the Patient it is referring.

Set “Resource type” to “ServiceRequest”.

Set “JSONPath” to “$.subject.reference”.

206 Chapter 35. CommCare FHIR Integration

https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/fhir/const.py#L35
https://www.hl7.org/fhir/patient.html#search

CommCareHQ Documentation, Release 1.0

Set “Related resource type” to “Patient”.

If the “Related resource is parent” checkbox is not checked, then CommCare will just create a case for the Patient. If it
is checked, then CommCare will also create an index on the case for the ServiceRequest as a child case, and link it to
the case for the Patient as its parent case.

The child-to-parent relationship will follow the direction of the reference. So if a Foo resource has a reference to a Bar
resource, then in CommCare the “foo” case will be the child of the “bar” case.

35.2.5 Testing FHIRImportConfig configuration

To make sure your configuration works as expected, add some test data to a FHIR server, and import it.

Here is a script I used for adding test data:

add_service_request.py:

#!/usr/bin/env python3
from datetime import date, timedelta
from random import choice
import requests
import string

BASE_URL = 'http://localhost:8425/hapi-fhir-jpaserver/fhir/' # ends in '/'

GIVEN_NAMES = 'Alice Bethany Claire Deborah Eilidh Francesca'.split()
FAMILY_NAMES = 'Apple Barker Carter Davenport Erridge Franks'.split()
NOTE = 'Patient missed appt. Pls follow up.'

def add_patient():
given_name = choice(GIVEN_NAMES)
family_name = choice(FAMILY_NAMES)
full_name = f'{given_name} {family_name}'
patient = {

'resourceType': 'Patient',
'name': [{

'given': [given_name],
'family': family_name,
'text': full_name,

}],
'telecom': [{

'system': 'phone',
'value': create_phone_number(),

}],
}
response = requests.post(

f'{BASE_URL}Patient/',
json=patient,
headers={'Accept': 'application/json'},

)
assert 200 <= response.status_code < 300, response.text
return response.json()['id'], full_name

(continues on next page)

35.2. Importing cases from a remote FHIR service 207

CommCareHQ Documentation, Release 1.0

(continued from previous page)

def add_service_request(patient_id, patient_name):
service_request = {

'resourceType': 'ServiceRequest',
'status': 'active',
'intent': 'directive',
'subject': {

'reference': f'Patient/{patient_id}',
'display': patient_name,

},
'note': [{

'text': NOTE,
}]

}
response = requests.post(

f'{BASE_URL}ServiceRequest/',
json=service_request,
headers={'Accept': 'application/json'},

)
assert 200 <= response.status_code < 300, response.text

def create_phone_number():
number = ''.join([choice(string.digits) for _ in range(9)])
return f'0{number[0:2]} {number[2:5]} {number[5:]}'

if __name__ == '__main__':
patient_id, patient_name = add_patient()
add_service_request(patient_id, patient_name)

From a Python console, run your import with:

>>> from corehq.motech.fhir.tasks import run_daily_importers
>>> run_daily_importers()

35.3 The FHIR API

CommCare offers a FHIR R4 API. It returns responses in JSON.

The FHIR API is not yet targeted at external users. API users must be superusers.

The API focuses on the Patient resource. The endpoint for a Patient would be https://www.commcarehq.org/a/
<domain>/fhir/R4/Patient/<case-id>

To search for the patient’s Observations, the API accepts the “patient_id” search filter. For example, https://www.
commcarehq.org/a/<domain>/fhir/R4/Observation/?patient_id=<case-id>

208 Chapter 35. CommCare FHIR Integration

CommCareHQ Documentation, Release 1.0

35.3.1 Using the FHIR API

Dimagi offers tools to help others use the CommCare HQ FHIR API:

A CommCare HQ Sandbox

The sandbox is a suite of Docker containers that launches a complete CommCare HQ instance and the services it needs:

1. Clone the CommCare HQ repository:

$ git clone https://github.com/dimagi/commcare-hq.git

2. Launch CommCare HQ using the script provided:

$ scripts/docker runserver

CommCare HQ is now accessible at http://localhost:8000/

A Reference API Client

A simple example of a web service that calls the CommCare HQ FHIR API to retrieve patient data is available as a
reference.

You can find it implemented using the Flask Python web framework, or FastAPI for async Python.

35.4 Mapping case properties using the Data Dictionary

The FHIR Resources to be sent by data forwarding, or shared by the FHIR API, are configured using the Data Dictionary.
(Under the “Data” menu, choose “View All”, and navigate to “Data Dictionary”)

The Data Dictionary is enabled using the “Data Dictionary” feature flag.

For example, let us imagine mapping a “person” case type to the “Patient” FHIR resource type. You would select the
“person” case type from the list of case types on the left.

Set the value of the “FHIR ResourceType” dropdown to “Patient”.

35.4. Mapping case properties using the Data Dictionary 209

https://github.com/dimagi/commcare-fhir-web-app/
https://github.com/dimagi/commcare-fhir-web-app/tree/fast_api

CommCareHQ Documentation, Release 1.0

The Data Dictionary supports simple mapping of case properties. You will see a table of case properties, and a column
titled “FHIR Resource Property Path”. This is where to enter the JSONPath to the resource property to set.

An example will help to illustrate this: Imagine the “person” case type has a “first_name” case property, and assume
we want to map its value to the patient’s given name.

1. Check the structure of a FHIR Patient on the HL7 website.

2. Note Patient.name has a cardinality of “0..*”, so it is a list.

3. Check the HumanName datatype.

4. Note Patient.name.given also has a cardinality of “0..*”.

5. Refer to JSONPath expression syntax to see how to refer to Patient’s first given name. . . . You will find it is $.
name[0].given[0]. (To become more familiar with JSONPath, playing with the JSONPath Online Evaluator
can be fun and useful.)

6. Fill the value “$.name[0].given[0]” into the “FHIR Resource Property Path” field for the “first_name” case prop-
erty.

7. You can test this using a tool like the Postman REST Client or the RESTED Firefox add-on / Chrome extension,
call the CommCare FHIR API endpoint for a patient. e.g. https://www.commcarehq.org/a/<domain>/
fhir/R4/Patient/<case-id> (You will need to configure the REST client for API key authentication.) You
will get a result similar to the following:

{
"id": "<case-id>",
"resourceType": "Patient",
"name": [
{

"given": [
"Jane"

]
}

]
}

8. Use JSONPath to map the rest of the case properties you wish to represent in the Patient resource. For a simpler
example, a “date_of_birth” case property would be mapped to “$.birthDate”.

Playing with the JSONPath Online Evaluator can be fun and useful way to become more familiar with JSONPath.

35.5 Advanced mapping using the Admin interface

The Data Dictionary is meant to offer as simple an interface as possible for mapping case properties to FHIR resource
properties. But what about FHIR resource properties whose values are not stored in case properties? Or FHIR resource
properties whose data types are not the same as their corresponding case properties?

This can done using the Admin site, and is accessible to superusers.

Mappings are configured using ValueSource definitions. For more information about ValueSource, see the Value Source
documentation.

Open the Admin site, and navigate to “FHIR” > “FHIR resource types”.

There is a list of case types that have been mapped to resource types. Filter by domain if the list is long. Select the
resource-type/case-type pair to configure.

210 Chapter 35. CommCare FHIR Integration

https://goessner.net/articles/JsonPath/
https://www.hl7.org/fhir/patient.html#resource
https://www.hl7.org/fhir/datatypes.html#HumanName
https://goessner.net/articles/JsonPath/index.html#e2
https://jsonpath.com/
https://www.postman.com/product/rest-client/
https://addons.mozilla.org/en-US/firefox/addon/rested/
https://chrome.google.com/webstore/detail/rested/eelcnbccaccipfolokglfhhmapdchbfg
https://confluence.dimagi.com/display/commcarepublic/Authentication#Authentication-ApiKeyauthentication
https://jsonpath.com/

CommCareHQ Documentation, Release 1.0

Let us imagine we are configuring mappings from a “vaccine_dose” case type to the “Immunization” FHIR resource
type.

If there are already mappings from case properties to resource properties, they are listed under “FHIR resource prop-
erties”. They appear in the “Calculated value source” column, and shown as a JSON document. e.g.

{
"case_property": "vaccine_type_code",
"jsonpath": "$.vaccineCode.coding[0].code"

}

Continuing with the vaccineCode example, a remote service will need more context to make sense of a code. The
Admin interface allows us to specify the coding system that the code applies to. The following two resource properties
specify that the code is a CPT 2021 vaccine code.

{
"jsonpath": "$.vaccineCode.coding[0].system",
"value": "http://www.ama-assn.org/go/cpt"

}

{
"jsonpath": "$.vaccineCode.coding[0].version",
"value": "2021"

}

These set the “system” and “version” properties of the Coding instance to constant values.

Next, let us take a look at mapping a property from a parent case. The Immunization resource type has a “programEl-
igibility” property. This is its coding system:

{
"jsonpath": "$.programEligibility[0].coding[0].system",
"value": "http://terminology.hl7.org/CodeSystem/immunization-program-eligibility"

}

If the value for programEligibility is stored on CommCare’s “person” case type, the parent case of the “vaccine_dose”
case, here is how to specify a value from the “person” case’s “eligible” case property:

{
"supercase_value_source": {
"jsonpath": "$.programEligibility[0].coding[0].code",
"case_property": "eligible"

},
"identifier": "parent",
"referenced_type": "person",
"relationship": "child"

}

Casting data types is another important use case for the Admin interface. Here is an example of how we ensure that an
integer is sent in JSON format as an integer and not a string:

{
"case_property": "dose_number",
"jsonpath": "$.protocolApplied.doseNumberPositiveInt",

(continues on next page)

35.5. Advanced mapping using the Admin interface 211

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"external_data_type": "cc_integer"
}

We use the same approach to cast a string of space-separated values to a list of strings. This is particularly useful for
the given names of a patient:

{
"case_property": "given_names",
"jsonpath": "$.name[0].given",
"external_data_type": "fhir_list_of_string",
"commcare_data_type": "cc_text"

}

For a complete list of the data types available, refer to corehq/motech/const.py and corehq/motech/fhir/const.py in the
source code.

Note: Mappings are not designed for transforming values, just, well, mapping them. It is better to do more complex
transformations inside a CommCare form, and store the result in a hidden value question. See the Multiple values from
a single question section under Forwarding Cases to a FHIR API as an example.

212 Chapter 35. CommCare FHIR Integration

https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/const.py#L34
https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/fhir/const.py#L31

CHAPTER

THIRTYSIX

THE MOTECH OPENMRS & BAHMNI MODULE

See the MOTECH README for a brief introduction to OpenMRS and Bahmni in the context of MOTECH.

• OpenmrsRepeater

• OpenMRS Repeater Location

• OpenmrsConfig

• An OpenMRS Patient

• OpenmrsCaseConfig

• PatientFinder

– Creating Missing Patients

– WeightedPropertyPatientFinder

• OpenmrsFormConfig

• Provider

• Atom Feed Integration

– Adding cases for OpenMRS patients

– Importing OpenMRS Encounters

– How to Inspect an Observation or a Diagnosis

36.1 OpenmrsRepeater

class corehq.motech.openmrs.repeaters.OpenmrsRepeater(*args, **kwargs)
OpenmrsRepeater is responsible for updating OpenMRS patients with changes made to cases in CommCare. It
is also responsible for creating OpenMRS “visits”, “encounters” and “observations” when a corresponding visit
form is submitted in CommCare.

The OpenmrsRepeater class is different from most repeater classes in three details:

1. It has a case type and it updates the OpenMRS equivalent of cases like the CaseRepeater class, but it reads
forms like the FormRepeater class. So it subclasses CaseRepeater but its payload format is form_json.

2. It makes many API calls for each payload.

3. It can have a location.

213

https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/README.md#the-openmrs--bahmni-module\T1\textgreater {}

CommCareHQ Documentation, Release 1.0

Parameters
• repeater_type (CharField) – Repeater type

• id (UUIDField) – Primary key: Id

• domain (CharIdField) – Domain

• name (CharField) – Name

• format (CharField) – Format

• request_method (CharField) – Request method

• is_paused (BooleanField) – Is paused

• next_attempt_at (DateTimeField) – Next attempt at

• last_attempt_at (DateTimeField) – Last attempt at

• options (JSONField) – Options

• connection_settings_id (IntegerField) – Connection settings id

• is_deleted (BooleanField) – Is deleted

• last_modified (DateTimeField) – Last modified

• date_created (DateTimeField) – Date created

Reverse relationships:

Parameters
repeat_records (Reverse ForeignKey from SQLRepeatRecord) – All repeat records of this
repeater (related name of repeater)

36.2 OpenMRS Repeater Location

Assigning an OpenMRS repeater to a location allows a project to integrate with multiple OpenMRS/Bahmni servers.

Imagine a location hierarchy like the following:

• (country) South Africa

– (province) Gauteng

– (province) Western Cape

∗ (district) City of Cape Town

∗ (district) Central Karoo

· (municipality) Laingsburg

Imagine we had an OpenMRS server to store medical records for the city of Cape Town, and a second OpenMRS server
to store medical records for the central Karoo.

When a mobile worker whose primary location is set to Laingsburg submits data, MOTECH will search their location
and the locations above it until it finds an OpenMRS server. That will be the server that their data is forwarded to.

When patients are imported from OpenMRS, either using its Atom Feed API or its Reporting API, and new cases are
created in CommCare, those new cases must be assigned an owner.

The owner will be the first mobile worker found in the OpenMRS server’s location. If no mobile workers are found,
the case’s owner will be set to the location itself. A good way to manage new cases is to have just one mobile worker,

214 Chapter 36. The MOTECH OpenMRS & Bahmni Module

https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.CharField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.UUIDField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.CharField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.CharField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.CharField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.BooleanField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.DateTimeField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.DateTimeField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.IntegerField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.BooleanField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.DateTimeField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.DateTimeField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.ForeignKey

CommCareHQ Documentation, Release 1.0

like a supervisor, assigned to the same location as the OpenMRS server. In the example above, in terms of organization
levels, it would make sense to have a supervisor at the district level and other mobile workers at the municipality level.

See also: PatientFinder

36.3 OpenmrsConfig

class corehq.motech.openmrs.openmrs_config.OpenmrsConfig(_obj=None, **kwargs)
Configuration for an OpenMRS repeater is stored in an OpenmrsConfig document.

The case_config property maps CommCare case properties (mostly) to patient data, and uses the
OpenmrsCaseConfig document schema.

The form_configs property maps CommCare form questions (mostly) to event, encounter and observation
data, and uses the OpenmrsFormConfig document schema.

36.4 An OpenMRS Patient

The way we map case properties to an OpenMRS patient is based on how OpenMRS represents a patient. Here is an
example of an OpenMRS patient (with some fields removed):

{
"uuid": "d95bf6c9-d1c6-41dc-aecf-1c06bd71386c",
"display": "GAN200000 - Test DrugDataOne",

"identifiers": [
{
"uuid": "6c5ab204-a128-48f9-bfb2-3f65fd06785b",
"identifier": "GAN200000",
"identifierType": {
"uuid": "81433852-3f10-11e4-adec-0800271c1b75",

}
}

],

"person": {
"uuid": "d95bf6c9-d1c6-41dc-aecf-1c06bd71386c",
"display": "Test DrugDataOne",
"gender": "M",
"age": 3,
"birthdate": "2014-01-01T00:00:00.000+0530",
"birthdateEstimated": false,
"dead": false,
"deathDate": null,
"causeOfDeath": null,
"deathdateEstimated": false,
"birthtime": null,

"attributes": [
{
"display": "primaryContact = 1234",

(continues on next page)

36.3. OpenmrsConfig 215

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"uuid": "2869508d-3484-4eb7-8cc0-ecaa33889cd2",
"value": "1234",
"attributeType": {
"uuid": "c1f7fd17-3f10-11e4-adec-0800271c1b75",
"display": "primaryContact"

}
},
{
"display": "caste = Tribal",
"uuid": "06ab9ef7-300e-462f-8c1f-6b65edea2c80",
"value": "Tribal",
"attributeType": {
"uuid": "c1f4239f-3f10-11e4-adec-0800271c1b75",
"display": "caste"

}
},
{
"display": "General",
"uuid": "b28e6bbc-91aa-4ba4-8714-cdde0653eb90",
"value": {
"uuid": "c1fc20ab-3f10-11e4-adec-0800271c1b75",
"display": "General"

},
"attributeType": {
"uuid": "c1f455e7-3f10-11e4-adec-0800271c1b75",
"display": "class"

}
}

],

"preferredName": {
"display": "Test DrugDataOne",
"uuid": "760f18ea-9321-4c31-9a43-338089fc5b4b",
"givenName": "Test",
"familyName": "DrugDataOne"

},

"preferredAddress": {
"display": "123",
"uuid": "c41f82e2-6af2-459c-96ff-26b66c8887ae",
"address1": "123",
"address2": "gp123",
"address3": "Raigarh",
"cityVillage": "RAIGARH",
"countyDistrict": "Raigarh",
"stateProvince": "Chattisgarh",
"country": null,
"postalCode": null

},

"names": [
{

(continues on next page)

216 Chapter 36. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"display": "Test DrugDataOne",
"uuid": "760f18ea-9321-4c31-9a43-338089fc5b4b",
"givenName": "Test",
"familyName": "DrugDataOne"

}
],

"addresses": [
{
"display": "123",
"uuid": "c41f82e2-6af2-459c-96ff-26b66c8887ae",
"address1": "123",
"address2": "gp123",
"address3": "Raigarh",
"cityVillage": "RAIGARH",
"countyDistrict": "Raigarh",
"stateProvince": "Chattisgarh",
"country": null,
"postalCode": null

}
]

}
}

There are several things here to note:

• A patient has a UUID, identifiers, and a person.

• Other than “uuid”, most of the fields that might correspond to case properties belong to “person”.

• “person” has a set of top-level items like “gender”, “age”, “birthdate”, etc. And then there are also “attributes”.
The top-level items are standard OpenMRS person properties. “attributes” are custom, and specific to this Open-
MRS instance. Each attribute is identified by a UUID.

• There are two kinds of custom person attributes:

1. Attributes that take any value (of its data type). Examples from above are “primaryContact = 1234” and
“caste = Tribal”.

2. Attributes whose values are selected from a set. An example from above is “class”, which is set to “Gen-
eral”. OpenMRS calls these values “Concepts”, and like everything else in OpenMRS each concept value
has a UUID.

• A person has “names” and a “preferredName”, and similarly “addresses” and “preferredAddress”. Case proper-
ties are only mapped to preferredName and preferredAddress. We do not keep track of other names and addresses.

36.4. An OpenMRS Patient 217

CommCareHQ Documentation, Release 1.0

36.5 OpenmrsCaseConfig

Now that we know what a patient looks like, the OpenmrsCaseConfig schema will make more sense. It has the
following fields that correspond to OpenMRS’s fields:

• patient_identifiers

• person_properties

• person_attributes

• person_preferred_name

• person_preferred_address

Each of those assigns values to a patient one of three ways:

1. It can assign a constant. This uses the “value” key. e.g.

"person_properties": {
"birthdate": {
"value": "Oct 7, 3761 BCE"

}
}

2. It can assign a case property value. Use “case_property” for this. e.g.

"person_properties": {
"birthdate": {
"case_property": "dob"

}
}

3. It can map a case property value to a concept UUID. Use “case_property” with “value_map” to do this. e.g.

"person_attributes": {
"c1f455e7-3f10-11e4-adec-0800271c1b75": {
"case_property": "class",
"value_map": {
"sc": "c1fcd1c6-3f10-11e4-adec-0800271c1b75",
"general": "c1fc20ab-3f10-11e4-adec-0800271c1b75",
"obc": "c1fb51cc-3f10-11e4-adec-0800271c1b75",
"other_caste": "c207073d-3f10-11e4-adec-0800271c1b75",
"st": "c20478b6-3f10-11e4-adec-0800271c1b75"

}
}

}

Note: An easy mistake when configuring person_attributes: The OpenMRS UUID of a person attribute type is
different from the UUID of its concept. For the person attribute type UUID, navigate to Administration > Person >
*Manage PersonAttribute Types and select the person attribute type you want. Note the greyed-out UUID. This is the
UUID that you need. If the person attribute type is a concept, navigate to Administration > Concepts > View Concept
Dictionary and search for the person attribute type by name. Select it from the search results. Note the UUID of the
concept is different. Select each of its answers. Use their UUIDs in value_map.

There are two more OpenmrsCaseConfig fields:

218 Chapter 36. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

• match_on_ids

• patient_finder

match_on_ids is a list of patient identifiers. They can be all or a subset of those given in OpenmrsCaseCon-
fig.patient_identifiers. When a case is updated in CommCare, these are the IDs to be used to select the corresponding
patient from OpenMRS. This is done by repeater_helpers.get_patient_by_id()

This is sufficient for projects that import their patient cases from OpenMRS, because each CommCare case will have
a corresponding OpenMRS patient, and its ID, or IDs, will have been set by OpenMRS.

Note: MOTECH has the ability to create or update the values of patient identifiers. If an app offers this ability to
users, then that identifier should not be included in match_on_ids. If the case was originally matched using only that
identifier and its value changes, MOTECH may be unable to match that patient again.

For projects where patient cases can be registered in CommCare, there needs to be a way of finding a corresponding
patient, if one exists.

If repeater_helpers.get_patient_by_id() does not return a patient, we need to search OpenMRS for a corre-
sponding patient. For this we use PatientFinders. OpenmrsCaseConfig.patient_finder will determine which
class of PatientFinder the OpenMRS repeater must use.

36.6 PatientFinder

class corehq.motech.openmrs.finders.PatientFinder(_obj=None, **kwargs)
The PatientFinder base class was developed as a way to handle situations where patient cases are created in
CommCare instead of being imported from OpenMRS.

When patients are imported from OpenMRS, they will come with at least one identifier that MOTECH can use
to match the case in CommCare with the corresponding patient in OpenMRS. But if the case is registered in
CommCare then we may not have an ID, or the ID could be wrong. We need to search for a corresponding
OpenMRS patient.

Different projects may focus on different kinds of case properties, so it was felt that a base class would allow
some flexibility.

The PatientFinder.wrap() method allows you to wrap documents of subclasses.

The PatientFinder.find_patients() method must be implemented by subclasses. It returns a list of zero,
one, or many patients. If it returns one patient, the OpenmrsRepeater.find_or_create_patient() will accept that
patient as a true match.

Note: The consequences of a false positive (a Type II error) are severe: A real patient will have their valid values
overwritten by those of someone else. So PatientFinder subclasses should be written and configured to skew
towards false negatives (Type I errors). In other words, it is much better not to choose a patient than to choose
the wrong patient.

36.6. PatientFinder 219

CommCareHQ Documentation, Release 1.0

36.6.1 Creating Missing Patients

If a corresponding OpenMRS patient is not found for a CommCare case, then PatientFinder has the option to create
a patient in OpenMRS. This is managed with the optional create_missing property. Its value defaults to false. If
it is set to true, then it will create a new patient if none are found.

For example:

"patient_finder": {
"doc_type": "WeightedPropertyPatientFinder",
"property_weights": [
{"case_property": "given_name", "weight": 0.5},
{"case_property": "family_name", "weight": 0.6}

],
"searchable_properties": ["family_name"],
"create_missing": true

}

If more than one matching patient is found, a new patient will not be created.

All required properties must be included in the payload. This is sure to include a name and a date of birth, possibly
estimated. It may include an identifier. You can find this out from the OpenMRS Administration UI, or by testing the
OpenMRS REST API.

36.6.2 WeightedPropertyPatientFinder

class corehq.motech.openmrs.finders.WeightedPropertyPatientFinder(*args, **kwargs)
The WeightedPropertyPatientFinder class finds OpenMRS patients that match CommCare cases by assign-
ing weights to case properties, and adding the weights of matching patient properties to calculate a confidence
score.

36.7 OpenmrsFormConfig

MOTECH sends case updates as changes to patient properties and attributes. Form submissions can also create Visits,
Encounters and Observations in OpenMRS.

Configure this in the “Encounters config” section of the OpenMRS Forwarder configuration.

An example value of “Encounters config” might look like this:

[
{
"doc_type": "OpenmrsFormConfig",
"xmlns": "http://openrosa.org/formdesigner/9481169B-0381-4B27-BA37-A46AB7B4692D",
"openmrs_start_datetime": {
"form_question": "/metadata/timeStart",
"external_data_type": "omrs_date"

},
"openmrs_visit_type": "c22a5000-3f10-11e4-adec-0800271c1b75",
"openmrs_encounter_type": "81852aee-3f10-11e4-adec-0800271c1b75",
"openmrs_observations": [
{
"doc_type": "ObservationMapping",

(continues on next page)

220 Chapter 36. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"concept": "5090AAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"value": {
"form_question": "/data/height"

}
},
{
"doc_type": "ObservationMapping",
"concept": "e1e055a2-1d5f-11e0-b929-000c29ad1d07",
"value": {
"form_question": "/data/lost_follow_up/visit_type",
"value_map": {
"Search": "e1e20e4c-1d5f-11e0-b929-000c29ad1d07",
"Support": "e1e20f5a-1d5f-11e0-b929-000c29ad1d07"

}
},
"case_property": "last_visit_type"

}
]

}
]

This example uses two form question values, “/data/height” and “/data/lost_follow_up/visit_type”. They are sent as val-
ues of OpenMRS concepts “5090AAAAAAAAAAAAAAAAAAAAAAAAAAAA” and “e1e055a2-1d5f-11e0-b929-
000c29ad1d07” respectively.

The OpenMRS concept that corresponds to the form question “/data/height” accepts a numeric value.

The concept for “/data/lost_follow_up/visit_type” accepts a discrete set of values. For this we use FormQuestionMap
to map form question values, in this example “Search” and “Support”, to their corresponding concept UUIDs in Open-
MRS.

The case_property setting for ObservationMapping is optional. If it is set, when Observations are imported
from OpenMRS (see Atom Feed Integration below) then the given case property will be updated with the value from
OpenMRS. If the observation mapping is uses FormQuestionMap or CasePropertyMap with value_map (like the
“last_visit_type” example above), then the CommCare case will be updated with the CommCare value that corresponds
to the OpenMRS value’s UUID.

Set the UUIDs of openmrs_visit_type and openmrs_encounter_type appropriately according to the context of
the form in the CommCare app.

openmrs_start_datetime is an optional setting. By default, MOTECH will set the start of the visit and the encounter
to the time when the form was completed on the mobile worker’s device.

To change which timestamp is used, the following values for form_question are available:

• “/metadata/timeStart”: The timestamp, according to the mobile worker’s device, when the form was started

• “/metadata/timeEnd”: The timestamp, according to the mobile worker’s device, when the form was completed

• “/metadata/received_on”: The timestamp when the form was submitted to HQ.

The value’s default data type is datetime. But some organisations may need the value to be submitted to OpenMRS as
just a date. To do this, set external_data_type to omrs_date, as shown in the example.

36.7. OpenmrsFormConfig 221

CommCareHQ Documentation, Release 1.0

36.8 Provider

Every time a form is completed in OpenMRS, it creates a new Encounter.

Observations about a patient, like their height or their blood pressure, belong to an Encounter; just as a form submission
in CommCare can have many form question values.

The OpenMRS Data Model documentation explains that an Encounter can be associated with health care providers.

It is useful to label data from CommCare by creating a Provider in OpenMRS for CommCare.

OpenMRS configuration has a field called “Provider UUID”, and the value entered here is stored in OpenmrsConfig.
openmrs_provider.

There are three different kinds of entities involved in setting up a provider in OpenMRS: A Person instance; a Provider
instance; and a User instance.

Use the following steps to create a provider for CommCare:

From the OpenMRS Administration page, choose “Manage Persons” and click “Create Person”. Name, date of birth,
and gender are mandatory fields. “CommCare Provider” is probably a good name because OpenMRS will split it into
a given name (“CommCare”) and a family name (“Provider”). CommCare HQ’s first Git commit is dated 2009-03-10,
so that seems close enough to a date of birth. OpenMRS equates gender with sex, and is quite binary about it. You will
have to decided whether CommCare is male or female. When you are done, click “Create Person”. On the next page,
“City/Village” is a required field. You can set “State/Province” to “Other” and set “City/Village” to “Cambridge”.
Then click “Save Person”.

Go back to the OpenMRS Administration page, choose “Manage Providers” and click “Add Provider”. In the “Person”
field, type the name of the person you just created. You can also give it an Identifier, like “commcare”. Then click
Save.

You will need the UUID of the new Provider. Find the Provider by entering its name, and selecting it.

Make a note of the greyed UUID. This is the value you will need for “Provider UUID” in the configuration for the
OpenMRS Repeater.

Next, go back to the OpenMRS Administration page, choose “Manage Users” and click “Add User”. Under “Use a
person who already exists” enter the name of your new person and click “Next”. Give your user a username (like
“commcare”), and a password. Under “Roles” select “Provider”. Click “Save User”.

Now CommCare’s “Provider UUID” will be recognised by OpenMRS as a provider. Copy the value of the Provider
UUID you made a note of earlier into your OpenMRS configuration in CommCare HQ.

36.9 Atom Feed Integration

The OpenMRS Atom Feed Module allows MOTECH to poll feeds of updates to patients and encounters. The feed
adheres to the Atom syndication format.

An example URL for the patient feed would be like “http://www.example.com/openmrs/ws/atomfeed/patient/recent”.

Example content:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Patient AOP</title>
<link rel="self" type="application/atom+xml" href="http://www.example.com/openmrs/ws/

→˓atomfeed/patient/recent" />
<link rel="via" type="application/atom+xml" href="http://www.example.com/openmrs/ws/

(continues on next page)

222 Chapter 36. The MOTECH OpenMRS & Bahmni Module

https://wiki.openmrs.org/display/docs/Encounters+and+observations
https://wiki.openmrs.org/display/docs/Data+Model
https://wiki.openmrs.org/display/docs/Atom+Feed+Module
https://validator.w3.org/feed/docs/rfc4287.html
http://www.example.com/openmrs/ws/atomfeed/patient/recent

CommCareHQ Documentation, Release 1.0

(continued from previous page)

→˓atomfeed/patient/32" />
<link rel="prev-archive" type="application/atom+xml" href="http://www.example.com/

→˓openmrs/ws/atomfeed/patient/31" />
<author>
<name>OpenMRS</name>

</author>
<id>bec795b1-3d17-451d-b43e-a094019f6984+32</id>
<generator uri="https://github.com/ICT4H/atomfeed">OpenMRS Feed Publisher</generator>
<updated>2018-04-26T10:56:10Z</updated>
<entry>
<title>Patient</title>
<category term="patient" />
<id>tag:atomfeed.ict4h.org:6fdab6f5-2cd2-4207-b8bb-c2884d6179f6</id>
<updated>2018-01-17T19:44:40Z</updated>
<published>2018-01-17T19:44:40Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/patient/

→˓e8aa08f6-86cd-42f9-8924-1b3ea021aeb4?v=full]]></content>
</entry>
<entry>
<title>Patient</title>
<category term="patient" />
<id>tag:atomfeed.ict4h.org:5c6b6913-94a0-4f08-96a2-6b84dbced26e</id>
<updated>2018-01-17T19:46:14Z</updated>
<published>2018-01-17T19:46:14Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/patient/

→˓e8aa08f6-86cd-42f9-8924-1b3ea021aeb4?v=full]]></content>
</entry>
<entry>
<title>Patient</title>
<category term="patient" />
<id>tag:atomfeed.ict4h.org:299c435d-b3b4-4e89-8188-6d972169c13d</id>
<updated>2018-01-17T19:57:09Z</updated>
<published>2018-01-17T19:57:09Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/patient/

→˓e8aa08f6-86cd-42f9-8924-1b3ea021aeb4?v=full]]></content>
</entry>

</feed>

Similarly, an encounter feed URL would be like “http://www.example.com/openmrs/ws/atomfeed/encounter/recent”.

Example content:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Patient AOP</title>
<link rel="self" type="application/atom+xml" href="https://13.232.58.186/openmrs/ws/

→˓atomfeed/encounter/recent" />
<link rel="via" type="application/atom+xml" href="https://13.232.58.186/openmrs/ws/

→˓atomfeed/encounter/335" />
<link rel="prev-archive" type="application/atom+xml" href="https://13.232.58.186/

→˓openmrs/ws/atomfeed/encounter/334" />
<author>
<name>OpenMRS</name>

(continues on next page)

36.9. Atom Feed Integration 223

http://www.example.com/openmrs/ws/atomfeed/encounter/recent

CommCareHQ Documentation, Release 1.0

(continued from previous page)

</author>
<id>bec795b1-3d17-451d-b43e-a094019f6984+335</id>
<generator uri="https://github.com/ICT4H/atomfeed">OpenMRS Feed Publisher</generator>
<updated>2018-06-13T08:32:57Z</updated>
<entry>
<title>Encounter</title>
<category term="Encounter" />
<id>tag:atomfeed.ict4h.org:af713a2e-b961-4cb0-be59-d74e8b054415</id>
<updated>2018-06-13T05:08:57Z</updated>
<published>2018-06-13T05:08:57Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/bahmnicore/

→˓bahmniencounter/0f54fe40-89af-4412-8dd4-5eaebe8684dc?includeAll=true]]></content>
</entry>
<entry>
<title>Encounter</title>
<category term="Encounter" />
<id>tag:atomfeed.ict4h.org:320834be-e9c8-4b09-a99e-691dff18b3e4</id>
<updated>2018-06-13T05:08:57Z</updated>
<published>2018-06-13T05:08:57Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/bahmnicore/

→˓bahmniencounter/0f54fe40-89af-4412-8dd4-5eaebe8684dc?includeAll=true]]></content>
</entry>
<entry>
<title>Encounter</title>
<category term="Encounter" />
<id>tag:atomfeed.ict4h.org:fca253aa-b917-4166-946e-9da9baa901da</id>
<updated>2018-06-13T05:09:12Z</updated>
<published>2018-06-13T05:09:12Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/bahmnicore/

→˓bahmniencounter/c6d6c248-8cd4-4e96-a110-93668e48e4db?includeAll=true]]></content>
</entry>

</feed>

At the time of writing, the Atom feeds do not use ETags or offer HEAD requests. MOTECH uses a GET request to
fetch the document, and checks the timestamp in the <updated> tag to tell whether there is new content.

The feeds are paginated, and the page number is given at the end of the href attribute of the <link rel="via" ...
tag, which is found at the start of the feed. A <link rel="next-archive" ... tag indicates that there is a next
page.

MOTECH stores the last page number polled in the OpenmrsRepeater.atom_feed_status["patient"].
last_page and OpenmrsRepeater.atom_feed_status["encounter"]last_page properties. When it polls
again, it starts at this page, and iterates next-archive links until all have been fetched.

If this is the first time MOTECH is polling an Atom feed, it uses the /recentURL (as given in the example URL above)
instead of starting from the very beginning. This is to allow Atom feed integration to be enabled for ongoing projects
that may have a lot of established data. Administrators should be informed that enabling Atom feed integration will
not import all OpenMRS patients into CommCare, but it will add CommCare cases for patients created in OpenMRS
from the moment Atom feed integration is enabled.

224 Chapter 36. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

36.9.1 Adding cases for OpenMRS patients

MOTECH needs three kinds of data in order to add a case for an OpenMRS patient:

1. The case type. This is set using the OpenMRS Repeater’s “Case Type” field (i.e. OpenmrsRe-
peater.white_listed_case_types). It must have exactly one case type specified.

2. The case owner. This is determined using the OpenMRS Repeater’s “Location” field (i.e. OpenmrsRe-
peater.location_id). The owner is set to the first mobile worker (specifically CommCareUser instance) found
at that location.

3. The case properties to set. MOTECH uses the patient_identifiers, person_properties, per-
son_preferred_name, person_preferred_address, and person_attributes given in “Patient config” (Open-
mrsRepeater.openmrs_config.case_config) to map the values of an OpenMRS patient to case properties. All
and only the properties in “Patient config” are mapped.

The name of cases updated from the Atom feed are set to the display name of the person (not the display name of
patient because it often includes punctuation and an identifier).

When a new case is created, its case’s owner is determined by the CommCare location of the OpenMRS repeater. (You
can set the location when you create or edit the OpenMRS repeater in Project Settings > Data Forwarding.) The case
will be assigned to the first mobile worker found at the repeater’s location. The intention is that this mobile worker
would be a supervisor who can pass the case to the appropriate person.

36.9.2 Importing OpenMRS Encounters

MOTECH can import both patient data and data about encounters using Atom feed integration. This can be used for
updating case properties, associating clinical diagnoses with a patient, or managing referrals.

Bahmni includes diagnoses in the data of an encounter. The structure of a diagnosis is similar to that of an observation.
Diagnoses can only be imported from Bahmni; Bahmni does not offer an API for adding or updating diagnoses in
Bahmni. Configurations for observations and diagnoses are specified separately in the OpenmrsFormConfig definition
to make the distinction obvious.

Here is an example OpenmrsFormConfig:

[
{
"doc_type": "OpenmrsFormConfig",
"xmlns": "http://openrosa.org/formdesigner/9ECA0608-307A-4357-954D-5A79E45C3879",
"openmrs_form": null,
"openmrs_visit_type": "c23d6c9d-3f10-11e4-adec-0800271c1b75",

"openmrs_start_datetime": {
"direction": "in",
"jsonpath": "encounterDateTime",
"case_property": "last_clinic_visit_date",
"external_data_type": "omrs_datetime",
"commcare_data_type": "cc_date"

},

"openmrs_encounter_type": "81852aee-3f10-11e4-adec-0800271c1b75",
"openmrs_observations": [
{
"doc_type": "ObservationMapping",
"concept": "f8ca5471-4e76-4737-8ea4-7555f6d5af0f",

(continues on next page)

36.9. Atom Feed Integration 225

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"value": {
"case_property": "blood_group"

},
"case_property": "blood_group",
"indexed_case_mapping": null

},

{
"doc_type": "ObservationMapping",
"concept": "397b9631-2911-435a-bf8a-ae4468b9c1d4",
"value": {
"direction": "in",
"case_property": "[unused when direction = 'in']"

},
"case_property": null,
"indexed_case_mapping": {
"doc_type": "IndexedCaseMapping",
"identifier": "parent",
"case_type": "referral",
"relationship": "extension",
"case_properties": [
{
"jsonpath": "value",
"case_property": "case_name",
"value_map": {
"Alice": "397b9631-2911-435a-bf8a-111111111111",
"Bob": "397b9631-2911-435a-bf8a-222222222222",
"Carol": "397b9631-2911-435a-bf8a-333333333333"

}
},
{
"jsonpath": "value",
"case_property": "owner_id",
"value_map": {
"111111111111": "397b9631-2911-435a-bf8a-111111111111",
"222222222222": "397b9631-2911-435a-bf8a-222222222222",
"333333333333": "397b9631-2911-435a-bf8a-333333333333"

}
},
{
"jsonpath": "encounterDateTime",
"case_property": "referral_date",
"commcare_data_type": "date",
"external_data_type": "posix_milliseconds"

},
{
"jsonpath": "comment",
"case_property": "referral_comment"

}
]

}
}

(continues on next page)

226 Chapter 36. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

(continued from previous page)

],

"bahmni_diagnoses": [
{
"doc_type": "ObservationMapping",
"concept": "all",
"value": {
"direction": "in",
"case_property": "[unused when direction = 'in']"

},
"case_property": null,
"indexed_case_mapping": {
"doc_type": "IndexedCaseMapping",
"identifier": "parent",
"case_type": "diagnosis",
"relationship": "extension",
"case_properties": [
{
"jsonpath": "codedAnswer.name",
"case_property": "case_name"

},
{
"jsonpath": "certainty",
"case_property": "certainty"

},
{
"jsonpath": "order",
"case_property": "is_primary",
"value_map": {
"yes": "PRIMARY",
"no": "SECONDARY"

}
},
{
"jsonpath": "diagnosisDateTime",
"case_property": "diagnosis_datetime"

}
]

}
}

]
}

]

There is a lot happening in that definition. Let us look at the different parts.

"xmlns": "http://openrosa.org/formdesigner/9ECA0608-307A-4357-954D-5A79E45C3879",

Atom feed integration uses the same configuration as data forwarding, because mapping case properties to observations
normally applies to both exporting data to OpenMRS and importing data from OpenMRS.

For data forwarding, when the form specified by that XMLNS is submitted, MOTECH will export corresponding
observations.

36.9. Atom Feed Integration 227

CommCareHQ Documentation, Release 1.0

For Atom feed integration, when a new encounter appears in the encounters Atom feed, MOTECH will use the mappings
specified for any form to determine what data to import. In other words, this XMLNS value is not used for Atom feed
integration. It is only used for data forwarding.

"openmrs_start_datetime": {
"direction": "in",
"jsonpath": "encounterDateTime",
"case_property": "last_clinic_visit_date",
"external_data_type": "omrs_datetime",
"commcare_data_type": "cc_date"

},

Data forwarding can be configured to set the date and time of the start of an encounter. Atom feed integration can be con-
figured to import the start of the encounter. "direction": "in" tells MOTECH that these settings only apply to im-
porting via the Atom feed. "jsonpath": "encounterDateTime" fetches the value from the “encounterDateTime”
property in the document returned from OpenMRS. "case_property": "last_clinic_visit_date" saves that
value to the “last_clinic_visit_date” case property. The data type settings convert the value from a datetime to a date.

{
"doc_type": "ObservationMapping",
"concept": "f8ca5471-4e76-4737-8ea4-7555f6d5af0f",
"value": {
"case_property": "blood_group"

},
"case_property": "blood_group",
"indexed_case_mapping": null

},

The first observation mapping is configured for both importing and exporting. When data forwarding exports data,
it uses "value": {"case_property": "blood_group"} to determine which value to send. When MOTECH
imports via the Atom feed, it uses "case_property": "blood_group", "indexed_case_mapping": null
to determine what to do with the imported value. These specific settings tell MOTECH to save the value to the
“blood_group” case property, and not to create a subcase.

The next observation mapping gets more interesting:

{
"doc_type": "ObservationMapping",
"concept": "397b9631-2911-435a-bf8a-ae4468b9c1d4",
"value": {
"direction": "in",
"case_property": "[unused when direction = 'in']"

},
"case_property": null,
"indexed_case_mapping": {
"doc_type": "IndexedCaseMapping",
"identifier": "parent",
"case_type": "referral",
"relationship": "extension",
"case_properties": [
{
"jsonpath": "value",
"case_property": "case_name",
"value_map": {

(continues on next page)

228 Chapter 36. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"Alice": "397b9631-2911-435a-bf8a-111111111111",
"Bob": "397b9631-2911-435a-bf8a-222222222222",
"Carol": "397b9631-2911-435a-bf8a-333333333333"

}
},
{
"jsonpath": "value",
"case_property": "owner_id",
"value_map": {
"111111111111": "397b9631-2911-435a-bf8a-111111111111",
"222222222222": "397b9631-2911-435a-bf8a-222222222222",
"333333333333": "397b9631-2911-435a-bf8a-333333333333"

}
},
{
"jsonpath": "encounterDateTime",
"case_property": "referral_date",
"commcare_data_type": "date",
"external_data_type": "posix_milliseconds"

},
{
"jsonpath": "comment",
"case_property": "referral_comment"

}
]

}
}

"value": {"direction": "in" . . . tells MOTECH only to use this observation mapping for importing via the
Atom feed.

“indexed_case_mapping” is for creating a subcase. “identifier” is the name of the index that links the subcase to its
parent, and the value “parent” is convention in CommCare; unless there are very good reasons to use a different value,
“parent” should always be used.

"case_type": "referral" gives us a clue about what this configuration is for. The set of possible values of the
OpenMRS concept will be IDs of people, who OpenMRS/Bahmni users can choose to refer patients to. Those people
will have corresponding mobile workers in CommCare. This observation mapping will need to map the people in
OpenMRS to the mobile workers in CommCare.

"relationship": "extension" sets what kind of subcase to create. CommCare uses two kinds of subcase re-
lationships: “child”; and “extension”. Extension cases are useful for referrals and diagnoses for two reasons: if the
patient case is removed, CommCare will automatically remove its referrals and diagnoses; and mobile workers who
have access to a patient case will also be able to see all their diagnoses and referrals.

The observation mapping sets four case properties:

1. case_name: This is set to the name of the person to whom the patient is being referred.

2. owner_id: This is the most important aspect of a referral system. “owner_id” is a special case property that sets
the owner of the case. It must be set to a mobile worker’s ID. When this is done, that mobile worker will get the
patient case sent to their device on the next sync.

3. referral_date: The date on which the OpenMRS observation was made.

4. comment: The comment, if any, given with the observation.

36.9. Atom Feed Integration 229

CommCareHQ Documentation, Release 1.0

The configuration for each case property has a “jsonpath” setting to specify where to get the value from the JSON data
of the observation given by the OpenMRS API. See How to Inspect an Observation or a Diagnosis below.

Inspecting the observation also helps us with a subtle and confusing setting:

{
"jsonpath": "encounterDateTime",
"case_property": "referral_date",
"commcare_data_type": "date",
"external_data_type": "posix_milliseconds"

},

The value for the “referral_date” case property comes from the observation’s “encounterDateTime” property. This
property has the same name as the “encounterDateTime” property of the encounter. (We used it earlier under the
“openmrs_start_datetime” setting to set the “last_clinic_visit_date” case property on the patient case.)

What is confusing is that “external_data_type” is set to “omrs_datetime” for encounter’s “encounterDateTime” prop-
erty. But here, for the observation, “external_data_type” is set to “posix_milliseconds”. An “omrs_datetime” value
looks like "2018-01-18T01:15:09.000+0530". But a “posix_milliseconds” value looks like 1516218309000

The only way to know that is to inspect the JSON data returned by the OpenMRS API.

The last part of the configuration deals with Bahmni diagnoses:

"bahmni_diagnoses": [
{
"doc_type": "ObservationMapping",
"concept": "all",
"value": {
"direction": "in",
"case_property": "[unused when direction = 'in']"

},
"case_property": null,
"indexed_case_mapping": {
"doc_type": "IndexedCaseMapping",
"identifier": "parent",
"case_type": "diagnosis",
"relationship": "extension",
"case_properties": [
{
"jsonpath": "codedAnswer.name",
"case_property": "case_name"

},
{
"jsonpath": "certainty",
"case_property": "certainty"

},
{
"jsonpath": "order",
"case_property": "is_primary",
"value_map": {
"yes": "PRIMARY",
"no": "SECONDARY"

}
},
{

(continues on next page)

230 Chapter 36. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"jsonpath": "diagnosisDateTime",
"case_property": "diagnosis_datetime"

}
]

}
}

]

At a glance, it is clear that like the configuration for referrals, this configuration also uses extension cases. There are a
few important differences.

"concept": "all" tells MOTECH to import all Bahmni diagnosis concepts, not just those that are explicitly con-
figured.

"value": {"direction": "in" . . . The OpenMRS API does not offer the ability to add or modify a diagnosis.
“direction” will always be set to “in”.

The case type of the extension case is “diagnosis”. This configuration sets four case properties. “case_name” should
be considered a mandatory case property. It is set to the name of the diagnosis. The value of “jsonpath” is determined
by inspecting the JSON data of an example diagnosis. The next section gives instructions for how to do that. Follow
the instructions, and as a useful exercise, try to see how the JSON path “codedAnswer.name” was determined from the
sample JSON data of a Bahmni diagnosis given by the OpenMRS API.

36.9.3 How to Inspect an Observation or a Diagnosis

To see what the JSON representation of an OpenMRS observation or Bahmni diagnosis is, you can use the official
Bahmni demo server.

1. Log in as “superman” with the password “Admin123”.

2. Click “Registration” and register a patient.

3. Click the “home” button to return to the dashboard, and click “Clinical”.

4. Select your new patient, and create an observation or a diagnosis for them.

5. In a new browser tab or window, open the Encounter Atom feed.

6. Right-click and choose “View Page Source”.

7. Find the URL of the latest encounter in the “CDATA” value in the “content” tag. It will look similar to this:
“/openmrs/ws/rest/v1/bahmnicore/bahmniencounter/<UUID>?includeAll=true”

8. Construct the full URL, e.g. “https://demo.mybahmni.org/openmrs/ws/rest/v1/bahmnicore/
bahmniencounter/<UUID>?includeAll=true” where “<UUID>” is the UUID of the encounter.

9. The OpenMRS REST Web Services API does not make it easy to get a JSON-formatted response using a browser.
You can use a REST API Client like Postman, or you can use a command line tool like curl or Wget.

Fetch the content with the “Accept” header set to “application/json”.

Using curl

$ curl -u superman:Admin123 -H "Accept: application/json" \
"https://demo.mybahmni.org/...?includeAll=true" > encounter.json

Using wget

36.9. Atom Feed Integration 231

https://demo.mybahmni.org/bahmni/home/
https://demo.mybahmni.org/openmrs/ws/atomfeed/encounter/recent
https://demo.mybahmni.org/openmrs/ws/rest/v1/bahmnicore/bahmniencounter
https://demo.mybahmni.org/openmrs/ws/rest/v1/bahmnicore/bahmniencounter
https://wiki.openmrs.org/display/docs/REST+Web+Services+API+For+Clients#RESTWebServicesAPIForClients-ResponseFormat
https://www.getpostman.com/
https://curl.haxx.se/
https://www.gnu.org/software/wget/

CommCareHQ Documentation, Release 1.0

$ wget --user=superman --password=Admin123 \
--header="Accept: application/json" \
-O encounter.json \
"https://demo.mybahmni.org/...?includeAll=true"

Open encounter.json in a text editor that can automatically format JSON for you. (Atom with the pretty-json
package installed is not a bad choice.)

232 Chapter 36. The MOTECH OpenMRS & Bahmni Module

https://atom.io/
https://atom.io/packages/pretty-json

CHAPTER

THIRTYSEVEN

HOW DATA MAPPING WORKS

DHIS2-, OpenMRS- and FHIR Integration all use the ValueSource class to map CommCare data to API resources.

A ValueSource is given in JSON format. e.g.

{
"case_property": "active",
"jsonpath": "$.active"

}

This ValueSource maps the value from the case property named “active” to the “active” property of an API resource.

37.1 Different Sources of Values

The ValueSource class supports several different sources of values:

• case_property: As seen above, a ValueSource can be used for fetching a value from a case property, or setting
a value on a case property.

• form_question: Fetches a value from a form question. e.g. “/data/foo/bar” will get the value of a form
question named “bar” in the group “foo”. Form metadata is also available, e.g. “/metadata/received_on” is
the server time when the form submission was received. You can find more details in the source code at
corehq.motech.value_source:FormQuestion

• case_owner_ancestor_location_field: Specifies a location metadata field name. The ValueSource will
start at the location of the case owner, traverse up their location hierarchy, and return the first value it finds for a
location with that field. This can be used for mapping CommCare locations to locations or organization units in
a remote system.

• form_user_ancestor_location_field: Specifies a location metadata field name. Similar to
case_owner_ancestor_location_field but for forms instead of cases. The ValueSource will start at the location
of the user who submitted the form, traverse up their location hierarchy, and return the first value it finds for a
location with that field. This can be used for mapping CommCare locations to locations or organization units in
a remote system.

• subcase_value_source: Defines a ValueSource to be evaluated on the subcases of a case. e.g.

{
"subcase_value_source": {"case_property": "name"}
"case_type": "child",
"is_closed": false,
"jsonpath": "$.childrensNames"

}

233

CommCareHQ Documentation, Release 1.0

• supercase_value_source: Defines a ValueSource to be evaluated on the parent/host case of a case. e.g.

{
"supercase_value_source": {"case_property": "name"}
"referenced_type": "mother",
"jsonpath": "$.mothersName"

}

• value: A constant value. This can be used for exporting a constant, or it can be combined with case_property for
importing a constant value to a case property. See corehq.motech.value_source:ConstantValue for more details.

37.2 Data Types

Integrating structured data with remote systems can involve converting data from one format or data type to another.
Use data type declarations to cast the data type of a value.

For standard OpenMRS properties (person properties, name properties and address properties) MOTECH will set data
types correctly, and integrators do not need to worry about them.

But administrators may want a value that is a date in CommCare to a datetime in a remote system, or vice-versa. To
convert from one to the other, set data types for value sources.

The default is for both the CommCare data type and the external data type not to be set. e.g.

{
"expectedDeliveryDate": {
"case_property": "edd",
"commcare_data_type": null,
"external_data_type": null

}
}

To set the CommCare data type to a date and the OpenMRS data type to a datetime for example, use the following:

{
"expectedDeliveryDate": {
"case_property": "edd",
"commcare_data_type": "cc_date",
"external_data_type": "omrs_datetime"

}
}

For the complete list of CommCare data types, see MOTECH constants. For the complete list of DHIS2 data types,
see DHIS2 constants. For the complete list of OpenMRS data types, see OpenMRS constants.

234 Chapter 37. How Data Mapping Works

https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/const.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/dhis2/const.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/openmrs/const.py

CommCareHQ Documentation, Release 1.0

37.3 Import-Only and Export-Only Values

In configurations like OpenMRS Atom feed integration that involve both sending data to OpenMRS and importing data
from OpenMRS, sometimes some values should only be imported, or only exported.

Use the direction property to determine whether a value should only be exported, only imported, or (the default
behaviour) both.

For example, to import a patient value named “hivStatus” as a case property named “hiv_status” but not export it, use
"direction": "in":

{
"hivStatus": {
"case_property": "hiv_status",
"direction": "in"

}
}

To export a form question, for example, but not import it, use "direction": "out":

{
"hivStatus": {
"case_property": "hiv_status",
"direction": "out"

}
}

Omit direction, or set it to null, for values that should be both imported and exported.

37.4 Getting Values From JSON Documents

JSONPath has emerged as a standard for navigating JSON documents. It is supported by PostgreSQL, SQL Server,
and others. ValueSource uses it to read values from JSON API resources.

And, in the case of FHIR Integration, it also uses it to build FHIR resources.

See the article by Stefan Goessner, who created JSONPath, for more details.

OpenMRS observations and Bahmni diagnoses can be imported as extension cases of CommCare case. This is useful
for integrating patient referrals, or managing diagnoses.

Values from the observation or diagnosis can be imported to properties of the extension case. MOTECH needs to
traverse the JSON response from the remote system in order to get the right value. Value sources can use JSONPath to
do this.

Here is a simplified example of a Bahmni diagnosis to get a feel for JSONPath:

{
"certainty": "CONFIRMED",
"codedAnswer": {
"conceptClass": "Diagnosis",
"mappings": [
{
"code": "T68",
"name": "Hypothermia",

(continues on next page)

37.3. Import-Only and Export-Only Values 235

https://www.postgresql.org/docs/12/functions-json.html#FUNCTIONS-SQLJSON-PATH
https://docs.microsoft.com/en-us/sql/relational-databases/json/json-path-expressions-sql-server
https://goessner.net/articles/JsonPath/

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"source": "ICD 10 - WHO"
}

],
"shortName": "Hypothermia",
"uuid": "f7e8da66-f9a7-4463-a8ca-99d8aeec17a0"

},
"creatorName": "Eric Idle",
"diagnosisDateTime": "2019-10-18T16:04:04.000+0530",
"order": "PRIMARY"

}

The JSONPath for “certainty” is simply “certainty”.

The JSONPath for “shortName” is “codedAnswer.shortName”.

The JSONPath for “code” is “codedAnswer.mappings[0].code”.

For more details, see How to Inspect an Observation or a Diagnosis in the documentation for the MOTECH OpenMRS
& Bahmni Module.

37.5 The value_source Module

class corehq.motech.value_source.CaseOwnerAncestorLocationField(*, external_data_type: str | None
= None, commcare_data_type:
str | None = None, direction: str
| None = None, value_map: dict |
None = None, jsonpath: str |
None = None,
case_owner_ancestor_location_field:
str)

A reference to a location metadata value. The location may be the case owner, the case owner’s location, or the
first ancestor location of the case owner where the metadata value is set.

e.g.

{
"doc_type": "CaseOwnerAncestorLocationField",
"location_field": "openmrs_uuid"

}

__init__(*, external_data_type: str | None = None, commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath: str | None = None,
case_owner_ancestor_location_field: str)→ None

Method generated by attrs for class CaseOwnerAncestorLocationField.

classmethod wrap(data)
Allows us to duck-type JsonObject, and useful for doing pre-instantiation transforms / dropping unwanted
attributes.

class corehq.motech.value_source.CaseProperty(*, external_data_type: str | None = None,
commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath:
str | None = None, case_property: str)

236 Chapter 37. How Data Mapping Works

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

CommCareHQ Documentation, Release 1.0

A reference to a case property value.

e.g. Get the value of a case property named “dob”:

{
"case_property": "dob"

}

__init__(*, external_data_type: str | None = None, commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath: str | None = None, case_property: str)→
None

Method generated by attrs for class CaseProperty.

class corehq.motech.value_source.CasePropertyConstantValue(*, external_data_type: str | None =
None, commcare_data_type: str | None
= None, direction: str | None = None,
value_map: dict | None = None,
jsonpath: str | None = None, value: str,
value_data_type: str = 'cc_text',
case_property: str)

__init__(*, external_data_type: str | None = None, commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath: str | None = None, value: str,
value_data_type: str = 'cc_text', case_property: str)→ None

Method generated by attrs for class CasePropertyConstantValue.

class corehq.motech.value_source.ConstantValue(*, external_data_type: str | None = None,
commcare_data_type: str | None = None, direction: str
| None = None, value_map: dict | None = None,
jsonpath: str | None = None, value: str,
value_data_type: str = 'cc_text')

ConstantValue provides a ValueSource for constant values.

value must be cast as value_data_type.

get_value() returns the value for export. Use external_data_type to cast the export value.

get_import_value() and deserialize() return the value for import. Use commcare_data_type to cast
the import value.

>>> one = ConstantValue.wrap({
... "value": 1,
... "value_data_type": COMMCARE_DATA_TYPE_INTEGER,
... "commcare_data_type": COMMCARE_DATA_TYPE_DECIMAL,
... "external_data_type": COMMCARE_DATA_TYPE_TEXT,
... })
>>> info = CaseTriggerInfo("test-domain", None)
>>> one.deserialize("foo")
1.0
>>> one.get_value(info) # Returns '1.0', not '1'. See note below.
'1.0'

Note: one.get_value(info) returns '1.0', not '1', because get_commcare_value() casts value as
commcare_data_type first. serialize() casts it from commcare_data_type to external_data_type.

37.5. The value_source Module 237

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CommCareHQ Documentation, Release 1.0

This may seem counter-intuitive, but we do it to preserve the behaviour of ValueSource.serialize().

__init__(*, external_data_type: str | None = None, commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath: str | None = None, value: str,
value_data_type: str = 'cc_text')→ None

Method generated by attrs for class ConstantValue.

deserialize(external_value: Any)→ Any
Converts the value’s external data type or format to its data type or format for CommCare, if necessary,
otherwise returns the value unchanged.

class corehq.motech.value_source.FormQuestion(*, external_data_type: str | None = None,
commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath:
str | None = None, form_question: str)

A reference to a form question value.

e.g. Get the value of a form question named “bar” in the group “foo”:

{
"form_question": "/data/foo/bar"

}

Note: Normal form questions are prefixed with “/data”. Form metadata, like “received_on” and “userID”, are
prefixed with “/metadata”.

The following metadata is available:

Name Description
deviceID An integer that identifies the user’s device
timeStart The device time when the user opened the form
timeEnd The device time when the user completed the form
received_on The server time when the submission was received
username The user’s username without domain suffix
userID A large unique number expressed in hexadecimal
instanceID A UUID identifying this form submission

__init__(*, external_data_type: str | None = None, commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath: str | None = None, form_question: str)
→ None

Method generated by attrs for class FormQuestion.

class corehq.motech.value_source.FormUserAncestorLocationField(*, external_data_type: str | None
= None, commcare_data_type: str
| None = None, direction: str |
None = None, value_map: dict |
None = None, jsonpath: str | None
= None,
form_user_ancestor_location_field:
str)

A reference to a location metadata value. The location is the form user’s location, or the first ancestor location
of the form user where the metadata value is set.

238 Chapter 37. How Data Mapping Works

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

CommCareHQ Documentation, Release 1.0

e.g.

{
"doc_type": "FormUserAncestorLocationField",
"location_field": "dhis_id"

}

__init__(*, external_data_type: str | None = None, commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath: str | None = None,
form_user_ancestor_location_field: str)→ None

Method generated by attrs for class FormUserAncestorLocationField.

classmethod wrap(data)
Allows us to duck-type JsonObject, and useful for doing pre-instantiation transforms / dropping unwanted
attributes.

class corehq.motech.value_source.SubcaseValueSource(*, external_data_type: str | None = None,
commcare_data_type: str | None = None,
direction: str | None = None, value_map: dict |
None = None, jsonpath: str | None = None,
subcase_value_source: dict, case_types:
List[str] | None = None, is_closed: bool | None
= None)

A reference to a list of child/extension cases.

Evaluates nested ValueSource config, allowing for recursion.

__init__(*, external_data_type: str | None = None, commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath: str | None = None, subcase_value_source:
dict, case_types: List[str] | None = None, is_closed: bool | None = None)→ None

Method generated by attrs for class SubcaseValueSource.

set_external_value(external_data, info)
Builds external_data by reference.

Currently implemented for dicts using JSONPath but could be implemented for other types as long as they
are mutable.

class corehq.motech.value_source.SupercaseValueSource(*, external_data_type: str | None = None,
commcare_data_type: str | None = None,
direction: str | None = None, value_map: dict
| None = None, jsonpath: str | None = None,
supercase_value_source: dict, identifier: str |
None = None, referenced_type: str | None =
None, relationship: str | None = None)

A reference to a list of parent/host cases.

Evaluates nested ValueSource config, allowing for recursion.

__init__(*, external_data_type: str | None = None, commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath: str | None = None,
supercase_value_source: dict, identifier: str | None = None, referenced_type: str | None = None,
relationship: str | None = None)→ None

Method generated by attrs for class SupercaseValueSource.

37.5. The value_source Module 239

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CommCareHQ Documentation, Release 1.0

set_external_value(external_data, info)
Builds external_data by reference.

Currently implemented for dicts using JSONPath but could be implemented for other types as long as they
are mutable.

class corehq.motech.value_source.ValueSource(*, external_data_type: str | None = None,
commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath:
str | None = None)

Subclasses model a reference to a value, like a case property or a form question.

Use the get_value()method to fetch the value using the reference, and serialize it, if necessary, for the external
system that it is being sent to.

__init__(*, external_data_type: str | None = None, commcare_data_type: str | None = None, direction: str |
None = None, value_map: dict | None = None, jsonpath: str | None = None)→ None

Method generated by attrs for class ValueSource.

deserialize(external_value: Any)→ Any
Converts the value’s external data type or format to its data type or format for CommCare, if necessary,
otherwise returns the value unchanged.

get_value(case_trigger_info: CaseTriggerInfo)→ Any
Returns the value referred to by the ValueSource, serialized for the external system.

serialize(value: Any)→ Any
Converts the value’s CommCare data type or format to its data type or format for the external system, if
necessary, otherwise returns the value unchanged.

set_external_value(external_data: dict, info: CaseTriggerInfo)
Builds external_data by reference.

Currently implemented for dicts using JSONPath but could be implemented for other types as long as they
are mutable.

classmethod wrap(data: dict)
Allows us to duck-type JsonObject, and useful for doing pre-instantiation transforms / dropping unwanted
attributes.

corehq.motech.value_source.deserialize(value_source_config: JsonDict, external_value: Any)→ Any
Converts the value’s external data type or format to its data type or format for CommCare, if necessary, otherwise
returns the value unchanged.

corehq.motech.value_source.get_case_location(case)
If the owner of the case is a location, return it. Otherwise return the owner’s primary location. If the case owner
does not have a primary location, return None.

corehq.motech.value_source.get_form_question_values(form_json)
Given form JSON, returns question-value pairs, where questions are formatted “/data/foo/bar”.

e.g. Question “bar” in group “foo” has value “baz”:

>>> get_form_question_values({'form': {'foo': {'bar': 'baz'}}})
{'/data/foo/bar': 'baz'}

240 Chapter 37. How Data Mapping Works

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

CommCareHQ Documentation, Release 1.0

corehq.motech.value_source.get_import_value(value_source_config: JsonDict, external_data: dict)→
Any

Returns the external value referred to by the value source definition, deserialized for CommCare.

corehq.motech.value_source.get_value(value_source_config: JsonDict, case_trigger_info:
CaseTriggerInfo)→ Any

Returns the value referred to by the value source definition, serialized for the external system.

37.5. The value_source Module 241

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

CommCareHQ Documentation, Release 1.0

242 Chapter 37. How Data Mapping Works

CHAPTER

THIRTYEIGHT

GENERAL OVERVIEW

38.1 What is SSO?

Single sign-on (SSO) defines a scheme for authenticating a user with a single username and password across several
related, but independent, applications.

Note: Pay attention the difference between authentication and authorization.

Authentication is the process used to identify whether the credentials a user provides are valid

Authorization is the process used to determine the set of permissions to grant a user that determines what they can
view or edit on the system.

38.2 Types of Protocols

Two of the most common types of protocols for SSO in web applications are OIDC (OpenID Connect) and SAML
(Security Assertion Markup Language).

CommCare HQ currently uses SAML 2.0 to handle SSO handshake procedures. It is a very mature and secure protocol
and is the standard for most enterprise applications.

OIDC is an authentication layer built on top of OAuth 2.0. When compared to SAML it is considered a less mature
protocol, but offers the pros of being lightweight and mobile + API friendly. However, not all Identity Providers support
OIDC, while all of them likely support SAML. In the future we may consider OIDC support if necessary.

38.3 How Does SSO Work?

SSO is based on a trust relationship between an application, the Service Provider (SP) and an Identity Provider (IdP).
CommCare HQ in this case acts as the Service Provider.

To create this trust, x509 certificates are exchanged between the IdP and the SP. The IdP uses the certificate to securely
sign (and sometimes encrypt) identity information that it sends back to the SP in the form of a token. Because the SP
knows the IdP’s public certificate, it knows that the information it receives is coming from a trusted source and knows
it’s safe to login the user based on the username that it receives in the token.

243

CommCareHQ Documentation, Release 1.0

244 Chapter 38. General Overview

CHAPTER

THIRTYNINE

ARCHITECTURE

Note: Everything related to SSO on CommCare HQ can be found in corehq.apps.sso

We have four primary models in our current SSO architecture, which is based on the SAML 2.0 protocol.

39.1 IdentityProvider

The IdentityProvider model is responsible for storing all the certificate information for a given Identity Provider (IdP),
like Azure AD.

It is also linked to a BillingAccount. This link determines what project spaces fall under the jurisdiction of the Identi-
tyProvider. Any project space that has a Subscription linked to the BillingAccount owner will automatically trust the
authentication information provided when a user is logged in with SSO.

Note: While the project spaces subscribed under an IdentityProvider’s BillingAccount automatically trust the IdP’s
authentication of a user, a user who signs into CommCare HQ with SSO via that IdP will not automatically gain access
to that project space.

Authorization is still managed within CommCare HQ, and a user has to be invited to a project in order to have access
to that project.

However, SSO allows a user to login to HQ without the need for going through the usual sign-up process.

39.2 AuthenticatedEmailDomain

A user on CommCare HQ is tied to an IdentityProvider based on the email domain of their username. An email
domain is the portion of an email address that follows the @ sign.

We tie email domains to IdentityProviders with the AuthenticatedEmailDomain model.

If a user’s email domain matches an AuthenticatedEmailDomain, during the SSO login process they will be directed
to the login workflow determined by the active IdentityProvider associated with the AuthenticatedEmailDomain.

Note: A user will only be forced to use SSO at login and sign up if ENFORCE_SSO_LOGIN in localsettings is set
to True. Otherwise, they will be able to login with a username and password (if they created an account originally this
way) or by visiting the IdentityProvider’s login URL (see the get_login_url method).

245

CommCareHQ Documentation, Release 1.0

39.3 UserExemptFromSingleSignOn

Even if the ENFORCE_SSO_LOGIN flag in localsettings is set to True, we still need to allow certain users the ability
to always login to CommCare HQ with their username and password. Generally, these users are one or two enterprise
admins (or other special users).

We require at least one user to be exempt from SSO login in the event that the IdentityProvider is misconfigured or the
certificate expires and a user needs to gain access to their enterprise console to fix the situation.

39.4 TrustedIdentityProvider

Project spaces that are not associated with the BillingAccount tied to a given IdentityProvider do not automatically
trust users who have authenticated with that IdentityProvider.

In order for a user to access a project space that is outside of their IdentityProvider’s jurisdiction, an admin of that
project space must first agree to trust the IdentityProvider associated with that user.

This trust can either be established from the Web Users list or when inviting a web user that is using SSO to the project.

Once a trust is established, any user authenticating with that IdentityProvider who is also a member of the project space
can now access the project space as if they had logged in with a username and password.

246 Chapter 39. Architecture

CHAPTER

FORTY

LOCAL SETUP

Note: Before you begin, please understand that if you are trying to use SAML authentication from localhost, it will
likely fail on the round-trip handshake, as it is not a public server.

40.1 Pre-Requisites

First, ensure that you have accounting admin privileges (see add_operations_user management command)

40.1.1 Create a Project

1. Navigate to + Add Project

2. Project Name: sparrow

3. (Click) Create Project

40.1.2 Create an Enterprise Software Plan

1. Navigate to Accounting –> Software Plans.

2. (Click) + Add New Software Plan
• Name: Sparrow Test Flight

• Edition: Enterprise

• [x] Is customer software plan

• (Click) Create Software Plan
3. Navigate to Roles and Features tab.

• Role: Enterprise Plan (enterprise_plan_v0)

• Add Features
– Choose User Advanced –> (Click) Add Feature
– Choose SMS Advanced –> (Click) Add Feature

• Add Products
– Choose CommCare Advanced –> (Click) Add Product

247

CommCareHQ Documentation, Release 1.0

• (Click) Update Plan Version
4. Navigate to Version Summary tab.

• Observe: Sparrow Test Flight (v1) details look ok.

40.1.3 Update the Billing Account for Initial Project

1. Navigate to Accounting –> Billing Accounts.
• Report Filters

– (Click) Apply
2. Navigate to account named Account for Project sparrow.

3. On to Account tab.
• Name: Sparrow Inc

• Client Contact Emails:
– client@example.edu

– admin@example.edu

• Dimagi Contact Email: user@example.org

• [x] Account is Active

• [x] Is Customer Billing Account

• Enterprise Admin Emails:
– admin@example.edu

4. Navigate to Subscriptions tab.
• (Click) Edit (should be only one existing subscription)

5. Navigate to Upgrade/Downgrade tab.
• Edition: Enterprise

• New Software Plan: Sparrow Test Flight (v1)

• Note: Upgrade. (or suitable upgrade note)

• (Click) Change Subscription

40.1.4 Add more projects to this subscription

1. Add a new project.
1. Navigate to + Add Project

2. Project Name: song-sparrow

3. (Click) Create Project
2. Navigate to Accounting –> Subscriptions.

• Report Filters
– Project Space: song-sparrow

248 Chapter 40. Local Setup

CommCareHQ Documentation, Release 1.0

– (Click) Apply
• Locate subscription for the project (should be only one)

• (Click) Edit
3. Navigate to the Upgrade/Downgrade tab.

• Edition: Enterprise

• New Software Plan: Sparrow Test Flight (v1)

• Note: Upgrade. (or suitable upgrade note)

• (Click) Change Subscription
4. Navigate to the Subscription tab.

• Transfer Subscription To: Sparrow Inc

• (Click) Update Subscription
5. Repeat. . .

40.2 Configure an Identity Provider

1. Navigate to Accounting –> Identity Providers (SSO).

2. (Click) + Add New Identity Provider
• Billing Account Owner: Sparrow Inc

• Public Name: Azure AD for Sparrow Inc

• Slug for SP Endpoints: sparrow

• (Click) Create Identity Provider
3. Navigate to Authenticated Email Domains tab.

• @: example.edu

• (Click) Add Email Domain
3. Navigate to SSO Exempt Users tab.

• admin@example.edu

• (Click) Add User
4. Navigate to Identity Provider tab.

• [x] Allow Enterprise Admins to edit SSO Enterprise Settings

• (Click) Update Configuration
• (Click) Edit Enterprise Settings (below “Allow. . . ” checkbox)

• Configure IdP settings. . .

40.2. Configure an Identity Provider 249

CommCareHQ Documentation, Release 1.0

250 Chapter 40. Local Setup

CHAPTER

FORTYONE

ADDING A NEW IDENTITY PROVIDER TYPE

Note: These instructions are for adding a new Identity Provider Type / Service (e.g. Okta, OneLogin, Azure AD,
etc.). To add a new active Identity Provider, you can follow the steps in Local Setup or in our SSO Enterprise Guides
on Confluence.

41.1 Before Beginning

41.1.1 What Protocol will be used?

As of the writing of this documentation, there are only two protocols used for SSO (SAML and OIDC/OAuth2). We
support both. Of the two, OIDC is generally easier to implement than SAML but the Identity Provider you wish to add
may have a preference for one over the other. For instance, Azure AD’s workflows clearly prefer SAML.

Another thing to note about protocol choice is that OIDC is generally easier to test locally, while SAML requires testing
on a publicly accessible machine like staging.

41.2 Steps for Adding the IdP Type

41.2.1 1. Make model changes and add migrations

You should add the new IdentityProviderType to corehq.apps.sso.models and create a migration for the sso
app. Then you should add the IdentityProviderType to the appropriate protocol in IdentityProviderProtocol’s
get_supported_types() method.

41.2.2 2. Test out the new provider type locally or on staging

Note: It is important to consider how we will support this new Identity Provider in the long term. Once a new IdP
Type is added, we will need to ensure that we can properly do regression tests during QA for any changed SSO code.
In order to do this, it’s best to ensure that we are able to setup a developer/test account with the Identity Provider.

You can follow the steps in Local Setup of this section to add the new Identity Provider. The biggest challenge will
likely be determining where to obtain all the requirements necessary to set up the connection in the Provider’s UI. For
instance, with OIDC you need to take note of where the Issuer URL, Client ID, and Client Secret are in the UI. Some
Identity Providers are more challenging to find these than others!

251

CommCareHQ Documentation, Release 1.0

Note: Pay attention to the language and field order of our forms in comparison with what a user might encounter in
the Identity Provider’s UI. It might be appropriate to change the order of certain fields, sections and/or language for the
Enterprise Admin SSO forms to match what the user sees in their provider’s UI.

Now you can activate the IdentityProvider. It’s easiest to use dimagi.org as the email domain to map users to, as this
is a domain alias for our email accounts (e.g. emails from foo@dimagi.com will also go to foo@dimagi.org). Please
do NOT use dimagi.com!

If you are doing tests on staging, take note you will likely have to deactivate and remove the email domain from another
Identity Provider (like Azure AD or One Login) that previously used this email domain for QA. Also, if you plan to test
on staging, the Dimagi SSO enterprise account mapped to the dimagi-sso-1, dimagi-sso-2, and dimagi-sso-3 domains
will be ready to test this new IdP.

41.2.3 3. Log in as an SSO user

With the new IdentityProvider configured and active, you can now log in as an SSO user from the login screen. During
this test you can identify any additional code changes that need to be made. For instance, a new OIDC IdentityProvider
might not send the expected user_data through, so changes might need to be made where that data is accessed (see
corehq.apps.sso.views.oidc). A new SAML provider might require changes to get_saml2_config() that are specific to
its requirements (see corehq.apps.sso.configuration), but make sure that the existing IdentityProvider’s configurations
remain unchanged.

41.2.4 4. Walk through workflows with our technical writer

Once you have verified that your changes are correctly logging in users and not throwing any errors, it’s time to proceed
to setting up a meeting with a technical writer so that the setup process with the new Identity Provider can be appro-
priately documented on Confluence for our Enterprise partners. Another goal of this meeting should be to document
any steps for the QA team to follow when setting up the Identity Provider.

41.2.5 5. Initiate QA

Now it’s time to initiate QA on staging for the new IdentityProviderType. In your QA request, be sure to include the
new setup information as documented by our technical writer and any credentials or sign up steps for QA to obtain a
developer account.

41.2.6 6. Determine whether a penetration test is required

If the only code changes required were language updates and adding a new IdentityProviderType this step can be
skipped. However, if you needed to update something like the SAML configuration, code in the SSOBackend, or areas
where authentication / user verification currently happens, then it might be a good idea to schedule a penetration test
with our security firm.

252 Chapter 41. Adding a New Identity Provider Type

mailto:foo@dimagi.com
mailto:foo@dimagi.org

CommCareHQ Documentation, Release 1.0

41.2.7 7. Pilot test with the Enterprise Partner on Production

Once QA is complete and our security firm has verified that no vulnerabilities exist (if applicable), it is time to onboard
our Enterprise Partner in the production environment. This will involve using the Login Enforcement option and the
“SSO Test Users” feature that you will find in the Edit Identity Provider form. When Login Enforcement is set to Test,
then only the SSO Test Users listed will be required to login with SSO from the homepage. This is a great way for the
Enterprise partner to test their setup and processes without immediately forcing all users under their email domain to
sign in with SSO.

41.2. Steps for Adding the IdP Type 253

CommCareHQ Documentation, Release 1.0

254 Chapter 41. Adding a New Identity Provider Type

CHAPTER

FORTYTWO

INTERNATIONALIZATION

This page contains the most common techniques needed for managing CommCare HQ localization strings. For more
comprehensive information, consult the Django Docs translations page or this helpful blog post.

42.1 How translations work

There are three major components to the translations system - identifying strings that need to be translated, having
human translators write translations for those strings, and then actually inserting those translations when appropriate.

1. ./manage.py makemessages scans the source code and pulls out strings that have been tagged for translation.
It does not actually execute code, and you should not put anything other than string literals in there. No string
formatting, no variable references, nothing.

2. Transifex is a third party site we use for translating these strings. Human translators look at the strings generated
by makemessages and type up appropriate translations. They have no context beyond what’s in the string itself.
Be nice to them and give template variables names, so instead of “{} version” they see “{build_date} version”,
which will be easier to understand.

3. Finally, strings are actually translated when the code is executed on the production servers. gettext is a simple
function call that takes the string provided and looks for it in the translations for the active language. If present,
it returns the corresponding translation. You can think of it like this

TRANSLATIONS = {
"en": {"hello": None},
"es": {"hello": "hola"},
"fra": {"hello": "bonjour"},

}

def naive_gettext(str):
return TRANSLATIONS[get_language()][str] or str

255

https://docs.djangoproject.com/en/dev/topics/i18n/translation/
http://blog.bessas.me/post/65775299341/using-gettext-in-django

CommCareHQ Documentation, Release 1.0

42.1.1 Concrete Examples

Table 1: Examples

What’s in code What gets
stored

Comments

_("Hello!") “Hello”
_("Hello, {}").
format(name)

“Hello, {}” Hard for the translator to understand

_("Hello, {name}").
format(name=name)

“Hello,
{name}”

Much better

_("I have a {} {}").
format(color, animal)

“I have a {} {}” Inscrutable, and the translator can’t reorder the args

_("Hello, {name}".
format(name=name))

“Hello,
{name}”

This is an error, it’ll be interpolated before the lookup, and that
string won’t be present in the translations file

_(f"Today is {day}") “Today is
{day}”

Also an error, for the same reason.

DAY = "Friday"; _(DAY) DAY isn’t a string. This is an error, it won’t even appear in the
translations file.

_("Hello, ") + name “Hello, “ Bad idea. The translator can’t move name to the beginning or
middle.

_("Hello, ") + name +
_(". How are you?")

“Hello, ” “.
How are you?”

Even worse. This will result in two strings that will not be trans-
lated together.

42.2 Tagging strings in views

TL;DR: gettext should be used in code that will be run per-request. gettext_lazy should be used in code that is
run at module import.

The management command makemessages pulls out strings marked for translation so they can be translated via tran-
sifex. All three gettext functions mark strings for translation. The actual translation is performed separately. This is
where the gettext functions differ.

• gettext: The function immediately returns the translation for the currently selected language.

• gettext_lazy: The function converts the string to a translation “promise” object. This is later coerced to a
string when rendering a template or otherwise forcing the promise.

• gettext_noop: This function only marks a string as translation string, it does not have any other effect; that is,
it always returns the string itself. This should be considered an advanced tool and generally avoided. It could be
useful if you need access to both the translated and untranslated strings.

The most common case is just wrapping text with gettext.

from django.utils.translation import gettext as _

def my_view(request):
messages.success(request, _("Welcome!"))

Typically when code is run as a result of a module being imported, there is not yet a user whose locale can be used for
translations, so it must be delayed. This is where gettext_lazy comes in. It will mark a string for translation, but delay
the actual translation as long as possible.

256 Chapter 42. Internationalization

CommCareHQ Documentation, Release 1.0

class MyAccountSettingsView(BaseMyAccountView):
urlname = 'my_account_settings'
page_title = gettext_lazy("My Information")
template_name = 'settings/edit_my_account.html'

When variables are needed in the middle of translated strings, interpolation can be used as normal. However, named
variables should be used to ensure that the translator has enough context.

message = _("User '{user}' has successfully been {action}.").format(
user=user.raw_username,
action=_("Un-Archived") if user.is_active else _("Archived"),

)

This ends up in the translations file as:

msgid "User '{user}' has successfully been {action}."

42.2.1 Using gettext_lazy

The gettext_lazy method will work in the majority of translation situations. It flags the string for translation but does not
translate it until it is rendered for display. If the string needs to be immediately used or manipulated by other methods,
this might not work.

When using the value immediately, there is no reason to do lazy translation.

return HttpResponse(gettext("An error was encountered."))

It is easy to forget to translate form field names, as Django normally builds nice looking text for you. When writing
forms, make sure to specify labels with a translation flagged value. These will need to be done with gettext_lazy.

class BaseUserInfoForm(forms.Form):
first_name = forms.CharField(label=gettext_lazy('First Name'), max_length=50,␣

→˓required=False)
last_name = forms.CharField(label=gettext_lazy('Last Name'), max_length=50,␣

→˓required=False)

gettext_lazy, a cautionary tale

gettext_lazy returns a proxy object, not a string, which can cause complications. These proxies will be coerced to
a string when used as one, using the user’s language if a request is active and available, and using the default language
(English) otherwise.

>>> group_name = gettext_lazy("mobile workers")
>>> type(group_name)
django.utils.functional.lazy.<locals>.__proxy__
>>> group_name.upper()
'MOBILE WORKERS'
>>> type(group_name.upper())
str

Converting gettext_lazy proxy objects to json will crash. You should use corehq.util.json.
CommCareJSONEncoder to properly coerce it to a string.

42.2. Tagging strings in views 257

CommCareHQ Documentation, Release 1.0

>>> import json
>>> from django.utils.translation import gettext_lazy
>>> json.dumps({"message": gettext_lazy("Hello!")})
TypeError: Object of type __proxy__ is not JSON serializable
>>> from corehq.util.json import CommCareJSONEncoder
>>> json.dumps({"message": gettext_lazy("Hello!")}, cls=CommCareJSONEncoder)
'{"message": "Hello!"}'

42.3 Tagging strings in template files

There are two ways translations get tagged in templates.

For simple and short plain text strings, use the trans template tag.

{% trans "Welcome to CommCare HQ" %}

More complex strings (requiring interpolation, variable usage or those that span multiple lines) can make use of the
blocktrans tag.

If you need to access a variable from the page context:

{% blocktrans %}This string will have {{ value }} inside.{% endblocktrans %}

If you need to make use of an expression in the translation:

{% blocktrans with amount=article.price %}
That will cost $ {{ amount }}.

{% endblocktrans %}

This same syntax can also be used with template filters:

{% blocktrans with myvar=value|filter %}
This will have {{ myvar }} inside.

{% endblocktrans %}

In general, you want to avoid including HTML in translations. This will make it easier for the translator to understand
and manipulate the text. However, you can’t always break up the string in a way that gives the translator enough context
to accurately do the translation. In that case, HTML inside the translation tags will still be accepted.

{% blocktrans %}
Manage Mobile Workers <small>for CommCare Mobile and
CommCare HQ Reports</small>

{% endblocktrans %}

Text passed as constant strings to template block tag also needs to be translated. This is most often the case in Comm-
Care with forms.

{% crispy form _("Specify New Password") %}

258 Chapter 42. Internationalization

CommCareHQ Documentation, Release 1.0

42.4 Tagging strings in JavaScript

Happily, Django also has support for translations in JavaScript.

JavaScript has a gettext function that works exactly the same as in python:

gettext("Welcome to CommCare HQ")

gettext is available globally in HQ, coming from django.js which is available via the base RequireJS setup, so it
doesn’t need to be added as a dependency to modules that use it.

For translations with interpolated variables, use Underscore’s _.template function similarly to python’s string format-
ting, calling gettext on the template and __then__ interpolating variables:

_.template(gettext("Hello, <%- name %>, it is <%- day %>."))({
name: firstName,
day: today,

})

42.5 Keeping translations up to date

Once a string has been added to the code, we can update the .po file by running makemessages.

To do this for all langauges:

$ django-admin makemessages --all

It will be quicker for testing during development to only build one language:

$ django-admin makemessages -l fra

After this command has run, your .po files will be up to date. To have content in this file show up on the website you
still need to compile the strings.

$ django-admin compilemessages

You may notice at this point that not all tagged strings with an associated translation in the .po shows up translated.
That could be because Django made a guess on the translated value and marked the string as fuzzy. Any string marked
fuzzy will not be displayed and is an indication to the translator to double check this.

Example:

#: corehq/__init__.py:103
#, fuzzy
msgid "Export Data"
msgstr "Exporter des cas"

42.4. Tagging strings in JavaScript 259

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/hqwebapp/static/hqwebapp/js/django.js
https://github.com/dimagi/commcare-hq/blob/f922211689b39240fcf16efe36d9dc13382977b8/corehq/apps/hqwebapp/templates/hqwebapp/partials/requirejs.html#L28
https://underscorejs.org/#template

CommCareHQ Documentation, Release 1.0

260 Chapter 42. Internationalization

CHAPTER

FORTYTHREE

UI HELPERS

There are a few useful UI helpers in our codebase which you should be aware of. Save time and create consistency.

43.1 Paginated CRUD View

Use corehq.apps.hqwebapp.views.CRUDPaginatedViewMixin the with a TemplateView subclass (ideally one that also
subclasses corehq.apps.hqwebapp.views.BasePageView or BaseSectionPageView) to have a paginated list of objects
which you can create, update, or delete.

43.1.1 The Basic Paginated View

In its very basic form (a simple paginated view) it should look like:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedViewMixin):
your template should extend hqwebapp/base_paginated_crud.html
template_name = 'puppyapp/paginated_puppies.html

all the user-visible text
limit_text = "puppies per page"
empty_notification = "you have no puppies"
loading_message = "loading_puppies"

required properties you must implement:

@property
def total(self):

How many documents are you paginating through?
return Puppy.get_total()

@property
def column_names(self):

What will your row be displaying?
return [

"Name",
"Breed",
"Age",

]

@property
(continues on next page)

261

CommCareHQ Documentation, Release 1.0

(continued from previous page)

def page_context(self):
This should at least include the pagination_context that␣

→˓CRUDPaginatedViewMixin provides
return self.pagination_context

@property
def paginated_list(self):

"""
This should return a list (or generator object) of data formatted as follows:
[

{
'itemData': {

'id': <id of item>,
<json dict of item data for the knockout model to use>

},
'template': <knockout template id>

}
]
"""
for puppy in Puppy.get_all()[self.skip:self.skip + self.limit]:

yield {
'itemData': {

'id': puppy._id,
'name': puppy.name,
'breed': puppy.breed,
'age': puppy.age,

},
'template': 'base-puppy-template',

}

def post(self, *args, **kwargs):
return self.paginate_crud_response

The template should use knockout templates to render the data you pass back to the view. Each template will have
access to everything inside of itemData. Here’s an example:

{% extends 'hqwebapp/base_paginated_crud.html' %}

{% block pagination_templates %}
<script type="text/html" id="base-puppy-template">

<td data-bind="text: name"></td>
<td data-bind="text: breed"></td>
<td data-bind="text: age"></td>

</script>
{% endblock %}

262 Chapter 43. UI Helpers

http://knockoutjs.com/documentation/template-binding.html

CommCareHQ Documentation, Release 1.0

43.1.2 Allowing Creation in your Paginated View

If you want to create data with your paginated view, you must implement the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...
def get_create_form(self, is_blank=False):

if self.request.method == 'POST' and not is_blank:
return CreatePuppyForm(self.request.POST)

return CreatePuppyForm()

def get_create_item_data(self, create_form):
new_puppy = create_form.get_new_puppy()
return {

'itemData': {
'id': new_puppy._id,
'name': new_puppy.name,
'breed': new_puppy.breed,
'age': new_puppy.age,

},
you could use base-puppy-template here, but you might want to add an␣

→˓update button to the
base template.
'template': 'new-puppy-template',

}

The form returned in get_create_form() should make use of crispy forms.

from django import forms
from crispy_forms.helper import FormHelper
from crispy_forms.layout import Layout
from crispy_forms.bootstrap import StrictButton, InlineField

class CreatePuppyForm(forms.Form):
name = forms.CharField()
breed = forms.CharField()
dob = forms.DateField()

def __init__(self, *args, **kwargs):
super(CreatePuppyForm, self).__init__(*args, **kwargs)
self.helper = FormHelper()
self.helper.form_style = 'inline'
self.helper.form_show_labels = False
self.helper.layout = Layout(

InlineField('name'),
InlineField('breed'),
InlineField('dob'),
StrictButton(

format_html('<i class="fa fa-plus"></i> {}', "Create Puppy"),
css_class='btn-primary',
type='submit'

)
)

(continues on next page)

43.1. Paginated CRUD View 263

https://django-crispy-forms.readthedocs.org/en/latest/

CommCareHQ Documentation, Release 1.0

(continued from previous page)

def get_new_puppy(self):
return new Puppy
return Puppy.create(self.cleaned_data)

43.1.3 Allowing Updating in your Paginated View

If you want to update data with your paginated view, you must implement the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...
def get_update_form(self, initial_data=None):

if self.request.method == 'POST' and self.action == 'update':
return UpdatePuppyForm(self.request.POST)

return UpdatePuppyForm(initial=initial_data)

@property
def paginated_list(self):

for puppy in Puppy.get_all():
yield {

'itemData': {
'id': puppy._id,
...
make sure you add in this line, so you can use the form in your␣

→˓template:
'updateForm': self.get_update_form_response(

self.get_update_form(puppy.inital_form_data)
),

},
'template': 'base-puppy-template',

}

@property
def column_names(self):

return [
...
if you're adding another column to your template, be sure to give it a name␣

→˓here...
_('Action'),

]

def get_updated_item_data(self, update_form):
updated_puppy = update_form.update_puppy()
return {

'itemData': {
'id': updated_puppy._id,
'name': updated_puppy.name,
'breed': updated_puppy.breed,
'age': updated_puppy.age,

},
'template': 'base-puppy-template',

}

264 Chapter 43. UI Helpers

CommCareHQ Documentation, Release 1.0

The UpdatePuppyForm should look something like:

class UpdatePuppyForm(CreatePuppyForm):
item_id = forms.CharField(widget=forms.HiddenInput())

def __init__(self, *args, **kwargs):
super(UpdatePuppyForm, self).__init__(*args, **kwargs)
self.helper.form_style = 'default'
self.helper.form_show_labels = True
self.helper.layout = Layout(

Div(
Field('item_id'),
Field('name'),
Field('breed'),
Field('dob'),
css_class='modal-body'

),
FormActions(

StrictButton(
"Update Puppy",
css_class='btn btn-primary',
type='submit',

),
HTML('<button type="button" class="btn btn-default" data-dismiss="modal">

→˓Cancel</button>'),
css_class="modal-footer'

)
)

def update_puppy(self):
return Puppy.update_puppy(self.cleaned_data)

You should add the following to your base-puppy-template knockout template:

<script type="text/html" id="base-puppy-template">
...
<td> <!-- actions -->

<button type="button"
data-toggle="modal"
data-bind="

attr: {
'data-target': '#update-puppy-' + id

}
"
class="btn btn-primary">

Update Puppy
</button>

<div class="modal fade"
data-bind="

attr: {
id: 'update-puppy-' + id

}
">

(continues on next page)

43.1. Paginated CRUD View 265

CommCareHQ Documentation, Release 1.0

(continued from previous page)

<div class="modal-dialog">
<div class="modal-content">

<div class="modal-header">
<button type="button"

class="close"
data-dismiss="modal"
aria-hidden="true">×</button>

<h3>
Update puppy <strong data-bind="text: name">:

</h3>
</div>
<div class="modal-body">

<div data-bind="html: updateForm"></div>
</div>

</div>
</div>

</div>
</td>

</script>

43.1.4 Allowing Deleting in your Paginated View

If you want to delete data with your paginated view, you should implement something like the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...

def get_deleted_item_data(self, item_id):
deleted_puppy = Puppy.get(item_id)
deleted_puppy.delete()
return {

'itemData': {
'id': deleted_puppy._id,
...

},
'template': 'deleted-puppy-template', # don't forget to implement this!

}

You should add the following to your base-puppy-template knockout template:

<script type="text/html" id="base-puppy-template">
...
<td> <!-- actions -->

...
<button type="button"

data-toggle="modal"
data-bind="

attr: {
'data-target': '#delete-puppy-' + id

}
"

(continues on next page)

266 Chapter 43. UI Helpers

CommCareHQ Documentation, Release 1.0

(continued from previous page)

class="btn btn-danger">
<i class="fa fa-remove"></i> Delete Puppy

</button>

<div class="modal fade"
data-bind="

attr: {
id: 'delete-puppy-' + id

}
">
<div class="modal-dialog">

<div class="modal-content">
<div class="modal-header">

<button type="button" class="close" data-dismiss="modal" aria-
→˓hidden="true">×</button>

<h3>
Delete puppy <strong data-bind="text: name">?

</h3>
</div>
<div class="modal-body">

<p class="lead">
Yes, delete the puppy named <strong data-bind="text: name"></

→˓strong>.
</p>

</div>
<div class="modal-footer">

<button type="button"
class="btn btn-default"
data-dismiss="modal">

Cancel
</button>
<button type="button"

class="btn btn-danger delete-item-confirm"
data-loading-text="Deleting Puppy...">

<i class="fa fa-remove"></i> Delete Puppy
</button>

</div>
</div>

</div>
</div>

</td>
</script>

43.1. Paginated CRUD View 267

CommCareHQ Documentation, Release 1.0

43.1.5 Refreshing The Whole List Base on Update

If you want to do something that affects an item’s position in the list (generally, moving it to the top), this is the feature
you want.

You implement the following method (note that a return is not expected):

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...

def refresh_item(self, item_id):
refresh the item here
puppy = Puppy.get(item_id)
puppy.make_default()
puppy.save()

Add a button like this to your template:

<button type="button"
class="btn refresh-list-confirm"
data-loading-text="Making Default...">

Make Default Puppy
</button>

Now go on and make some CRUD paginated views!

268 Chapter 43. UI Helpers

CHAPTER

FORTYFOUR

USING CLASS-BASED VIEWS IN COMMCARE HQ

We should move away from function-based views in django and use class-based views instead. The goal of this section
is to point out the infrastructure we’ve already set up to keep the UI standardized.

44.1 The Base Classes

There are two styles of pages in CommCare HQ. One page is centered (e.g. registration, org settings or the list of
projects). The other is a two column, with the left gray column acting as navigation and the right column displaying
the primary content (pages under major sections like reports).

44.1.1 A Basic (Centered) Page

To get started, subclass BasePageView in corehq.apps.hqwebapp.views. BasePageView is a subclass of django’s Tem-
plateView.

class MyCenteredPage(BasePageView):
urlname = 'my_centered_page'
page_title = "My Centered Page"
template_name = 'path/to/template.html'

@property
def page_url(self):

often this looks like:
return reverse(self.urlname)

@property
def page_context(self):

You want to do as little logic here.
Better to divvy up logical parts of your view in other instance methods or␣

→˓properties
to keep things clean.
You can also do stuff in the get() and post() methods.
return {

'some_property': self.compute_my_property(),
'my_form': self.centered_form,

}

urlname
This is what django urls uses to identify your page

269

CommCareHQ Documentation, Release 1.0

page_title
This text will show up in the <title> tag of your template. It will also show up in the primary heading of your
template.

If you want to do use a property in that title that would only be available after your page is instantiated, you
should override:

@property
def page_name(self):

return format_html("This is a page for {}", self.kitten.name)

page_name will not show up in the <title> tags, as you can include html in this name.

template_name
Your template should extend hqwebapp/base_page.html

It might look something like:

{% extends 'hqwebapp/base_page.html' %}

{% block js %}{{ block.super }}
{# some javascript imports #}

{% endblock %}

{% block js-inline %}{{ block.super }}
{# some inline javascript #}

{% endblock %}

{% block page_content %}
My page content! Woo!

{% endblock %}

{% block modals %}{{ block.super }}
{# a great place to put modals #}

{% endblock %}

44.1.2 A Section (Two-Column) Page

To get started, subclass BaseSectionPageView in corehq.apps.hqwebapp.views. You should implement all the things
described in the minimal setup for A Basic (Centered) Page in addition to:

class MySectionPage(BaseSectionPageView):
... # everything from BasePageView

section_name = "Data"
template_name = 'my_app/path/to/template.html'

@property
def section_url(self):

return reverse('my_section_default')

Note: Domain Views

270 Chapter 44. Using Class-Based Views in CommCare HQ

CommCareHQ Documentation, Release 1.0

If your view uses domain, you should subclass BaseDomainView. This inserts the domain name as into the
main_context and adds the login_and_domain_required permission. It also implements page_url to assume the basic
reverse for a page in a project: reverse(self.urlname, args=[self.domain])

section_name
This shows up as the root name on the section breadcrumbs.

template_name
Your template should extend hqwebapp/bootstrap3/base_section.html

It might look something like:

{% extends 'hqwebapp/bootstrap3/base_section.html' %}

{% block js %}{{ block.super }}
{# some javascript imports #}

{% endblock %}

{% block js-inline %}{{ block.super }}
{# some inline javascript #}

{% endblock %}

{% block main_column %}
My page content! Woo!

{% endblock %}

{% block modals %}{{ block.super }}
{# a great place to put modals #}

{% endblock %}

44.2 Adding to Urlpatterns

Your urlpatterns should look something like:

urlpatterns = patterns(
'corehq.apps.my_app.views',
...,
url(r'^my/page/path/$', MyCenteredPage.as_view(), name=MyCenteredPage.urlname),

)

44.3 Hierarchy

If you have a hierarchy of pages, you can implement the following in your class:

class MyCenteredPage(BasePageView):
...

@property
def parent_pages(self):

This will show up in breadcrumbs as MyParentPage > MyNextPage > MyCenteredPage
(continues on next page)

44.2. Adding to Urlpatterns 271

CommCareHQ Documentation, Release 1.0

(continued from previous page)

return [
{

'title': MyParentPage.page_title,
'url': reverse(MyParentPage.urlname),

},
{

'title': MyNextPage.page_title,
'url': reverse(MyNextPage.urlname),

},
]

If you have a hierarchy of pages, it might be wise to implement a BaseParentPageView or
Base<InsertSectionName>View that extends the main_context property. That way all of the pages in that sec-
tion have access to the section’s context. All page-specific context should go in page_context.

class BaseKittenSectionView(BaseSectionPageView):

@property
def main_context(self):

main_context = super(BaseParentView, self).main_context
main_context.update({

'kitten': self.kitten,
})
return main_context

44.4 Permissions

To add permissions decorators to a class-based view, you need to decorate the dispatch instance method.

class MySectionPage(BaseSectionPageView):
...

@method_decorator(can_edit)
def dispatch(self, request, *args, **kwargs)

return super(MySectionPage, self).dispatch(request, *args, **kwargs)

44.5 GETs and POSTs (and other http methods)

Depending on the type of request, you might want to do different things.

class MySectionPage(BaseSectionPageView):
...

def get(self, request, *args, **kwargs):
do stuff related to GET here...
return super(MySectionPage, self).get(request, *args, **kwargs)

def post(self, request, *args, **kwargs):
(continues on next page)

272 Chapter 44. Using Class-Based Views in CommCare HQ

CommCareHQ Documentation, Release 1.0

(continued from previous page)

do stuff related to post here...
return self.get(request, *args, **kwargs) # or any other HttpResponse object

44.5.1 Limiting HTTP Methods

If you want to limit the HTTP request types to just GET or POST, you just have to override the http_method_names
class property:

class MySectionPage(BaseSectionPageView):
...
http_method_names = ['post']

Note: Other Allowed Methods

put, delete, head, options, and trace are all allowed methods by default.

44.5. GETs and POSTs (and other http methods) 273

CommCareHQ Documentation, Release 1.0

274 Chapter 44. Using Class-Based Views in CommCare HQ

CHAPTER

FORTYFIVE

FORMS IN HQ

See the HQ Style Guide for guidance on form UI, whether you’re creating a custom HTML form or using crispy forms.

45.1 Making forms CSRF safe

HQ is protected against cross site request forgery attacks i.e. if a POST/PUT/DELETE request doesn’t pass csrf token
to corresponding View, the View will reject those requests with a 403 response. All HTML forms and AJAX calls that
make such requests should contain a csrf token to succeed. Making a form or AJAX code pass csrf token is easy and
the Django docs give detailed instructions on how to do so. Here we list out examples of HQ code that does that

1. If crispy form is used to render HTML form, csrf token is included automagically

2. For raw HTML form, use {% csrf_token %} tag in the form HTML, see tag_csrf_example.

3. If request is made via AJAX, it will be automagically protected by ajax_csrf_setup.js (which is included in base
bootstrap template) as long as your template is inherited from the base template. (ajax_csrf_setup.js overrides
$.ajaxSettings.beforeSend to accomplish this)

4. If an AJAX call needs to override beforeSend itself, then the super $.ajaxSettings.beforeSend should be explicitly
called to pass csrf token. See ajax_csrf_example

5. If HTML form is created in Javascript using raw nodes, csrf-token node should be added to that form. See
js_csrf_example_1 and js_csrf_example_2

6. If an inline form is generated using outside of RequestContext using render_to_string or its cousins, use
csrf_inline custom tag. See inline_csrf_example

7. If a View needs to be exempted from csrf check (for whatever reason, say for API), use csrf_exampt decorator
to avoid csrf check. See csrf_exempt_example

8. For any other special unusual case refer to Django docs. Essentially, either the HTTP request needs to have a
csrf-token or the corresponding View should be exempted from CSRF check.

275

https://github.com/dimagi/commcare-hq/pull/9580/files#diff-b707708b04006cb99be5064dedbc8240R41
https://github.com/dimagi/commcare-hq/commit/75c4fd0c638c2c79c8a1f765b70b1ac4709b043a#diff-3cfc511ef8ce8d4f15a3b64d1a113d26R125
https://github.com/dimagi/commcare-hq/commit/a3964b2f2f1f2839df1516934b66d11dbc90faaf#diff-8380c7394c4bb525b5a02ebabc97e08fR198
https://github.com/dimagi/commcare-hq/commit/fadf34936a4fabdf92e2e14503d39f1efb502aa2#diff-88a89488da4f667449d6a54763ab905aR9
https://github.com/dimagi/commcare-hq/commit/b12e0457b8e3b5c3accd5ef9f57a90b3018c7828#diff-597545574657c656fd164ce865186edaR1158
https://github.com/dimagi/commcare-hq/pull/9736/files#diff-a8527f8793e60d01dedc1bc05c822d76R174

CommCareHQ Documentation, Release 1.0

276 Chapter 45. Forms in HQ

CHAPTER

FORTYSIX

DIMAGI JAVASCRIPT GUIDE

Dimagi’s internal JavaScript guide for use in the CommCare HQ project.

Javascript code should be functional in all current major browsers, following the ECMAScript 2015 (ES6) standards,
and should follow the guidelines described in this document.

46.1 Table of contents

46.1.1 Static Files Organization

All* JavaScript code should be in a .js file and encapsulated as a module using hqDefine.

JavaScript files belong in the static directory of a Django app, which we structure as follows:

myapp/
static/myapp/
css/
font/
images/
js/ <= JavaScript
less/
lib/ <= Third-party code: This should be rare, since most third-party code␣

→˓should be coming from yarn
spec/ <= JavaScript tests
... <= May contain other directories for data files, i.e., `json/`

templates/myapp/
mytemplate.html

* There are a few places we do intentionally use script blocks, such as configuring less.js in CommCare HQ’s main
template, hqwebapp/base.html. These are places where there are just a few lines of code that are truly independent
of the rest of the site’s JavaScript. They are rare.

277

CommCareHQ Documentation, Release 1.0

46.1.2 Managing Dependencies

HQ’s JavaScript is being gradually migrated from a legacy, unstructured coding style the relies on the ordering of script
tags to instead use RequireJS for dependency management. This means that dependencies are managed differently
depending on which area of the code you’re working in. This page is a developer’s guide to understanding which area
you’re working in and what that means for your code.

How do I know whether or not I’m working with RequireJS?

You are likely working with RequireJS, as most of HQ has been migrated. However, several major areas have not
been migrated: app manager, reports, and web apps. Test code also does not currently use RequireJS; see Testing for
working with tests.

To tell for sure, look at your module’s hqDefine call, at the top of the file.

RequireJS modules look like this, with all dependencies loaded as part of hqDefine:

hqDefine("my_app/js/my_file", [
"knockout",
"hqwebapp/js/initial_page_data"

], function (
ko,
initialPageData

) {
var myObservable = ko.observable(initialPageData.get("thing"));
...

});

Non-RequireJS modules look like this, with no list and no function parameters. HQ modules are loaded using hqImport
in the body, and third party libraries aren’t declared at all, instead relying on globals:

hqDefine("my_app/js/my_file", function () {
var myObservable = ko.observable(hqImport("hqwebapp/js/initial_page_data").get("thing

→˓"));
...

});

How do I write a new page?

New code should be written in RequireJS, which is oriented around a single “entry point” into the page.

Most pages have some amount of logic only relevant to that page, so they have a file that includes that logic and then
depends on other modules for shared logic.

data_dictionary.js fits this common pattern:

hqDefine("data_dictionary/js/data_dictionary", [// Module name must match filename
"jquery", // Common third-party dependencies
"knockout",
"underscore",
"hqwebapp/js/initial_page_data", // Dependencies on HQ files always␣

→˓match the file's path
"hqwebapp/js/main",
"analytix/js/google",

(continues on next page)

278 Chapter 46. Dimagi JavaScript Guide

https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/testing.rst
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/data_dictionary/static/data_dictionary/js/data_dictionary.js

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"hqwebapp/js/knockout_bindings.ko", // This one doesn't need a named␣
→˓parameter because it only adds

// knockout bindings and is not␣
→˓referenced in this file
], function (

$, // These common dependencies use␣
→˓these names for compatibility

ko, // with non-requirejs pages, which␣
→˓rely on globals

_,
initialPageData, // Any dependency that will be␣

→˓referenced in this file needs a name.
hqMain,
googleAnalytics

) {
/* Function definitions, knockout model definitions, etc. */

var dataUrl = initialPageData.reverse('data_dictionary_json'); // Refer to␣
→˓dependencies by their named parameter

...

$(function () {
/* Logic to run on documentready */

});

// Other code isn't going to depend on this module, so it doesn't return anything or␣
→˓returns 1
});

To register your module as the RequireJS entry point, add the requirejs_main template tag to your HTML page, near
the top but outside of any other block:

{% requirejs_main 'data_dictionary/js/data_dictionary' %}

Some pages don’t have any unique logic but do rely on other modules. These are usually pages that use some common
widgets but don’t have custom UI interactions.

If your page only relies on a single js module, you can use that as the module’s entry point:

{% requirejs_main 'locations/js/widgets' %}

If your page relies on multiple modules, it still needs one entry point. You can handle this by making a module that has
no body, just a set of dependencies, like in gateway_list.js:

hqDefine("sms/js/gateway_list", [
"hqwebapp/js/crud_paginated_list_init",
"hqwebapp/js/bootstrap3/widgets",

], function () {
// No page-specific logic, just need to collect the dependencies above

});

Then in your HTML page:

46.1. Table of contents 279

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/static/sms/js/gateway_list.js

CommCareHQ Documentation, Release 1.0

{% requirejs_main 'sms/js/gateway_list' %}

The exception to the above is if your page inherits from a page that doesn’t use RequireJS. This is rare, but one example
would be adding a new page to app manager that inherits from managed_app.html.

How do I add a new dependency to an existing page?

RequireJS

Add the new module to your module’s hqDefine list of dependencies. If the new dependency will be directly referenced
in the body of the module, also add a parameter to the hqDefine callback:

hqDefine("my_app/js/my_module", [
...
"hqwebapp/js/my_new_dependency",

], function (
...,
myDependency

) {
...
myDependency.myFunction();

});

Non-RequireJS

In your HTML template, add a script tag to your new dependency. Your template likely already has scripts included in
a js block:

{% block js %}{{ block.super }}
...
<script src="{% static 'hqwebapp/js/my_new_dependency.js' %}"></script>

{% endblock js %}

In your JavaScript file, use hqImport to get access to your new dependency:

hqDefine("my_app/js/my_module", function () {
...
var myDependency = hqImport("hqwebapp/js/my_new_dependency");
myDependency.myFunction();

});

Do not add the RequireJS-style dependency list and parameters. It’s easy to introduce bugs that won’t be visible until
the module is actually migrated, and migrations are harder when they have pre-existing bugs. See the troubleshooting
section of the RequireJS Migration Guide if you’re curious about the kinds of issues that crop up.

280 Chapter 46. Dimagi JavaScript Guide

https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/migrating.rst#troubleshooting
https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/migrating.rst#troubleshooting

CommCareHQ Documentation, Release 1.0

How close are we to a world where we’ll just have one set of conventions?

As above, most code is migrated, but most of the remaining areas have significant complexity.

hqDefine.sh generates metrics for the current status of the migration and locates umigrated files. At the time of writing:

$./scripts/codechecks/hqDefine.sh

98% (825/843) of HTML files are free of inline scripts
88% (375/427) of JS files use hqDefine
59% (249/427) of JS files specify their dependencies
91% (765/843) of HTML files are free of script tags

Why aren’t we using something more fully-featured, more modern, or cooler than RequireJS?

This migration began quite a while ago. At the time, the team discussed options and selected RequireJS. The major-
ity of the work done to move to RequireJS has been around reorganizing code into modules and explicitly declaring
dependencies, which would be necessary for any kind of modern dependency management. We are not permanently
wedded to RequireJS, although it is unlikely that we will migrate to another tool while a significant amount of code is
still in the legacy state.

46.1.3 Historical Background on Module Patterns

This page discusses the evolution of HQ’s javascript module usage. For practical documentation on writing modules,
see Managing Dependencies.

We talk about JavaScript modules, but (at least pre-ES6) JavaScript has no built in support for modules. It’s easy to say
that, but think about how crazy that is. If this were Python, it would mean your program’s main file has to directly list
all of the files that will be needed, in the correct order, and then the files share state through global variables. That’s
insane.

And it’s also JavaScript. Fortunately, there are things you can do to enforce and respect the boundaries that keep us
sane by following one of a number of patterns.

We’re in the process of migrating to RequireJS. Part of this process has included developing a lighter-weight alternative
module system called hqDefine.

hqDefine serves as a stepping stone between legacy code and requirejs modules: it adds encapsulation but not full-
blown dependency management. New code is written in RequireJS, but hqDefine exists to support legacy code that
does not yet use RequireJS.

Before diving into hqDefine, I want to talk first about the status quo convention for sanity with no module system. As
we’ll describe, it’s a step down from our current preferred choice, but it’s still miles ahead of having no convention at
all.

46.1. Table of contents 281

https://github.com/dimagi/commcare-hq/blob/master/scripts/codechecks/hqDefine.sh
https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/dependencies.rst
https://requirejs.org/

CommCareHQ Documentation, Release 1.0

The Crockford Pattern

The Crockford module pattern was popularized in Douglas Crockford’s classic 2008 book JavaScript: The Good Parts.
(At least that’s how we heard about it here at Dimagi.) It essentially has two parts.

1. The first and more important of the two parts is to limit the namespace footprint of each file to a single variable
using a closure ((function () { /* your code here */ }());).

2. The second is to pick a single global namespace that you “own” (at Yahoo where he worked, theirs was YAHOO;
ours is COMMCAREHQ) and assign all your modules to properties (or properties of properties, etc.) of that one
global namespace.

Putting those together, it looks something like this:

MYNAMESPACE.myModule = function () {
// things inside here are private
var myPrivateGreeting = "Hello";
// unless you put them in the return object
var sayHi = function (name) {

console.log(myPrivateGreeting + " from my module, " + name);
};
return {

sayHi: sayHi,
favoriteColor: "blue",

};
}();

This uses a pattern so common in JavaScript that it has its own acronym “IIFE” for “Immediately Invoked Function
Expression”. By wrapping the contents of the module in a function expression, you can use variables and functions
local to your module and inaccessible from outside it.

I should also note that within our code, we’ve largely only adopted the first of the two steps; i.e. we do not usually
expose our modules under COMMCAREHQ, but rather as a single module MYMODULE or MyModule. Often we even slip
into exposing these “public” values (sayHi and favoriteColor in the example above) directly as globals, and you
can see how looseness in the application of this pattern can ultimately degenerate into having barely any system at
all. Notably, however, exposing modules as globals or even individual functions as globals—but while wrapping their
contents in a closure— is still enormously preferable to being unaware of the convention entirely. For example, if you
remove the closure from the example above (don’t do this), you get:

/* This is a toxic example, do not follow */

// actually a global
var myPrivateGreeting = "Hello";
// also a global
var sayHi = function (name) {

console.log(myPrivateGreeting + " from my module, " + name);
};
// also a global
myModule = {

sayHi: sayHi,
favoriteColor: "blue",

};

In this case, myPrivateGreeting (now poorly named), sayHi, and myModule would now be in the global namespace
and thus can be directly referenced or overwritten, possibly unintentionally, by any other JavaScript run on the same
page.

282 Chapter 46. Dimagi JavaScript Guide

CommCareHQ Documentation, Release 1.0

Despite being a great step ahead from nothing, this module pattern falls short in a number of ways.

1. It relies too heavily on programmer discipline, and has too many ways in which it is easy to cut corners, or even
apply incorrectly with good intentions

2. If you use the COMMCAREHQ.myJsModule approach, it’s easy to end up with unpredictable naming.

3. If you nest properties like COMMCAREHQ.myApp.myJsModule, you need boilerplate to make sure COMMCAREHQ.
myApp isn’t undefined. We never solved this properly and everyone just ended up avoiding it by not using the
COMMCAREHQ namespace.

4. From the calling code, especially without using the COMMCAREHQ namespace, there’s little to cue a reader as to
where a function or module is coming from; it’s just getting plucked out of thin (and global) air

This is why we are now using our own lightweight module system, described in the next sesion.

hqDefine

There are many great module systems out there, so why did we write our own? The answer’s pretty simple: while it’s
great to start with require.js or system.js, with a code base HQ’s size, getting from here to there is nearly impossible
without an intermediate step.

Using the above example again, using hqDefine, you’d write your file like this:

// file commcare-hq/corehq/apps/myapp/static/myapp/js/myModule.js
hqDefine('myapp/js/myModule', function () {

// things inside here are private
var myPrivateGreeting = "Hello";
// unless you put them in the return object
var sayHi = function (name) {

console.log(myPrivateGreeting + " from my module, " + name);
};
return {

sayHi: sayHi,
favoriteColor: "blue",

};
});

and when you need it in another file

// some other file
function () {

var sayHi = hqImport('myapp/js/myModule').sayHi;
// ... use sayHi ...

}

If you compare it to the above example, you’ll notice that the closure function itself is exactly the same. It’s just being
passed to hqDefine instead of being called directly.

hqDefine is an intermediate step on the way to full support for AMD modules, which in HQ is implemented using
RequireJS. hqDefine checks whether or not it is on a page that uses AMD modules and then behaves in one of two
ways: * If the page has been migrated, meaning it uses AMD modules, hqDefine just delegates to define. * If the
page has not been migrated, hqDefine acts as a thin wrapper around the Crockford module pattern. hqDefine takes a
function, calls it immediately, and puts it in a namespaced global; hqImport then looks up the module in that global.

In the first case, by handing control over to RequireJS, hqDefine/hqImport also act as a module loader. But in the
second case, they work only as a module dereferencer, so in order to use a module, it still needs to be included as a
<script> on your html page:

46.1. Table of contents 283

CommCareHQ Documentation, Release 1.0

<script src="{% static 'myapp/js/myModule.js' %}"></script>

Note that in the example above, the module name matches the end of the filename, the same name used to identify
the file when using the static tag, but without the js extension. This is necessary for RequireJS to work properly.
For consistency, all modules, regardless of whether or not they are yet compatible with RequireJS, should be named to
match their filename.

hqDefine and hqImport provide a consistent interface for both migrated and unmigrated pages, and that interface is
also consistent with RequireJS, making it easy to eventually “flip the switch” and remove them altogether once all code
is compatible with RequireJS.

46.1.4 RequireJS Migration Guide

This page is a guide to upgrading legacy code in HQ to use RequireJS. For information on how to work within ex-
isting code, see Managing Dependencies. Both that page and Historical Background on Module Patterns are useful
background for this guide.

• Background: modules and pages

• Basic Migration Process

• Troubleshooting

Background: modules and pages

The RequireJS migration deals with both pages (HTML) and modules (JavaScript). Any individual page is either
migrated or not. Individual modules are also migrated or not, but a “migrated” module may be used on both RequireJS
and non-RequireJS pages.

Logic in hqModules.js determines whether or not we’re in a RequireJS environment and changes the behavior of
hqDefine accordingly. In a RequireJS environment, hqDefine just passes through to RequireJS’s define. Once all
pages have been migrated, we’ll be able to delete hqModules.js altogether and switch all of the hqDefine calls to
define.

These docs walk through the process of migrating a single page to RequireJS.

Basic Migration Process

Prerequisites: Before a page can be migrated, all of its dependencies must already be in external JavaScript files and
must be using hqDefine. This is already true for the vast majority of code in HQ. Pages that are not descendants of
hqwebapp/base.html, which are rare, cannot yet be migrated.

Once these conditions are met, migrating to RequireJS is essentially the process of explicitly adding each module’s
dependencies to the module’s definition, and also updating each HTML page to reference a single “main” module
rather than including a bunch of <script> tags: 1. Add requirejs_main tag and remove <script> tags 1. Add
dependencies 1. Test

Sample PRs: - RequireJS migration: dashboard is an example of an easy migration, where all dependencies are already
migrated - RequireJS proof of concept migrates a few pages (lookup tables, data dictionary) and many of our commonly-
used modules (analytics, hq.helpers.js, etc.). This also contains the changes to hqModules.js that make hqDefine
support both migrated and unmigrated pages.

284 Chapter 46. Dimagi JavaScript Guide

https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/dependencies.rst
https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/module-history.rst
https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/hqwebapp/templates/hqwebapp/base.html
https://github.com/dimagi/commcare-hq/pull/19182/
https://github.com/dimagi/commcare-hq/pull/18116

CommCareHQ Documentation, Release 1.0

Add requirejs_main tag and remove <script> tags

The requirejs_main tag is what indicates that a page should use RequireJS. The page should have one “main” module.
Most of our pages are already set up like this: they might include a bunch of scripts, but there’s one in particular that
handles the event handlers, bindings, etc. that are specific to that page.

Considerations when choosing or creating a main module

• Most often, there’s already a single script that’s only included on the page you’re migrating, which you can use
as the main module.

• It’s fine for multiple pages to use the same main module - this may make sense for closely related pages.

• Sometimes a page will have some dependencies but no page-specific logic, so you can make a main module with
an empty body, as in invoice_main.js.

• Sometimes you can add a dependency or two to an existing module and then use it as your main module. This
can work fine, but be cautious of adding bloat or creating dependencies between django apps. There’s a loose
hierarchy:

– Major third-party libraries: jQuery, knockout, underscore

– hqwebapp

– analytics

– app-specific reusable modules like accounting/js/widgets, which are also sometimes used as main modules

– page-specific modules like accounting/js/subscriptions_main

• There’s a growing convention of using the suffix _main for main modules - more specifically, for any module
that runs logic in a document ready handler.

• HTML files that are only used as the base for other templates don’t need to have a main module or a
requirejs_main tag.

Add {% requirejs_main 'myApp/js/myModule' %} near the top of the template: it can go after load and
extends but should appear before content blocks. Note that it’s a module name, not a file name, so it doesn’t in-
clude .js.

Remove other <script> tags from the file. You’ll be adding these as dependencies to the main module.

Add dependencies

In your main module, add any dependent modules. Pre-RequireJS, a module definition looks like this:

hqDefine("app/js/utils", function() {
var $this = $("#thing");
hqImport("otherApp/js/utils").doSomething($thing);
...

});

The migrated module will have its dependencies passed as an array to hqDefine, and those dependencies will become
parameters to the module’s encompassing function:

hqDefine("app/js/utils", [
"jquery",
"otherApp/js/utils"

], function(
(continues on next page)

46.1. Table of contents 285

https://github.com/dimagi/commcare-hq/commit/d14ba14f13d7d44e3a96940d2c72d2a1b918534d#diff-b81a32d5fee6a9c8af07b189c6a5693e
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/accounting/static/accounting/js/widgets.js
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/accounting/static/accounting/js/subscriptions_main.js

CommCareHQ Documentation, Release 1.0

(continued from previous page)

$,
otherUtils

) {
var $this = $("#thing");
otherUtils.doSomething($thing);
...

});

To declare dependencies:

• Check if the module uses jQuery, underscore, or knockout, and if so add them (their module names are all
lowercase: ‘jquery’, ‘knockout’, ‘underscore’).

• Search the module for hqImport calls. Add any imported modules do the dependency list and parameter list,
and replace calls to hqImport(...) with the new parameter name.

• If you removed any <script> tags from the template and haven’t yet added them to the dependency list, do that.

• Check the template’s parent template
– If the parent has a requirejs_main module, the template you’re migrating should include a

dependency on that module.
∗ If the parent still has <script> tags, the template you’re migrating should include those as

dependencies. It’s usually convenient to migrate the parent and any “sibling” templates at
the same time so you can remove the <script> tags altogether. If that isn’t possible, make
the parent check before including script tags: {% if requirejs_main %}<script ...></
script>{% endif %}

∗ Also check the parent’s parent template, etc. Stop once you get to hqwebapp/base.html,
hqwebapp/bootstrap3/two_column.html, or hqwebapp/bootstrap3/base_section.
html, which already support requirejs.

• Check the view for any hqwebapp decorators like use_jquery_ui which are used to include many common yet
not global third-party libraries. Note that you typically should not remove the decorator, because these decorators
often control both css and js, but you do need to add any js scripts controlled by the decorator to your js module.

• If the module uses any globals from third parties, add the script as a dependency and also add the global to
thirdPartyGlobals in hqModules.js which prevents errors on pages that use your module but are not yet
migrated to requirejs.

Dependencies that aren’t directly referenced as modules don’t need to be added as function parameters, but they do
need to be in the dependency list, so just put them at the end of the list. This tends to happen for custom knockout
bindings, which are referenced only in the HTML, or jQuery plugins, which are referenced via the jQuery object rather
than by the module’s name.

Test

It’s often prohibitively time-consuming to test every JavaScript interaction on a page. However, it’s always important
to at least load the page to check for major errors. Beyond that, test for weak spots based on the changes you made:

• If you replaced any hqImport calls that were inside of event handlers or other callbacks, verify that those areas
still work correctly. When a migrated module is used on an unmigrated page, its dependencies need to be available
at the time the module is defined. This is a change from previous behavior, where the dependencies didn’t need
to be defined until hqImport first called them. We do not currently have a construct to require dependencies
after a module is defined.

286 Chapter 46. Dimagi JavaScript Guide

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/hqwebapp/decorators.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/hqwebapp/static/hqwebapp/js/hqModules.js

CommCareHQ Documentation, Release 1.0

• The most likely missing dependencies are the invisible ones: knockout bindings and jquery plugins like select2.
These often don’t error but will look substantially different on the page if they haven’t been initialized.

• If your page depends on any third-party modules that might not yet be used on any RequireJS pages, test them.
Third-party modules sometimes need to be upgraded to be compatible with RequireJS.

• If your page touched any javascript modules that are used by pages that haven’t yet been migrated, test at least
one of those non-migrated pages.

• Check if your base template has any descendants that should also be migrated.

Troubleshooting

Troubleshooting migration issues

When debugging RequireJS issues, the first question is whether or not the page you’re on has been migrated. You can
find out by checking the value of window.USE_REQUIREJS in the browser console.

Common issues on RequireJS pages:

• JS error like $(...).something is not a function: this indicates there’s a missing dependency. Typically
“something” is either select2 or a jQuery UI widget like datepicker. To fix, add the missing dependency to
the module that’s erroring.

• Missing functionality, but no error: this usually indicates a missing knockout binding. To fix, add the file
containing the binding to the module that applies that binding, which usually means adding hqwebapp/js/
knockout_bindings.ko to the page’s main module.

• JS error like something is not defined where something is one of the parameters in the module’s main
function: this can indicate a circular dependency. This is rare in HQ. Track down the circular dependency and
see if it makes sense to eliminate it by reorganizing code. If it doesn’t, you can use hqRequire to require the
necessary module at the point where it’s used rather than at the top of the module using it.

• JS error like x is not defined where x is a third-party module, which is the dependency of another third
party module y and both of them are non RequireJs modules. You may get this intermittent error when you want
to use y in the migrated module and x and y does not support AMD. You can fix this using shim or hqRequire.
Example of this could be d3 and nvd3

Common issues on non-RequireJS pages:

• JS error like something is not definedwhere something is a third-party module: this can happen if a non-
RequireJS page uses a RequireJS module which uses a third party module based on a global variable. There’s
some code that mimicks RequireJS in this situation, but it needs to know about all of the third party libraries. To
fix, add the third party module’s global to thirdPartyMap in hqModules.js.

• JS error like something is not defined where something is an HQ module: this can happen when script
tags are ordered so that a module appears before one of its dependencies. This can happen to migrated modules
because one of the effects of the migration is to typically import all of a module’s dependencies at the time the
module is defined, which in a non-RequireJS context means all of the dependencies’ script tags must appear
before the script tags that depend on them. Previously, dependencies were not imported until hqImport was
called, which could be later on, possibly in an event handler or some other code that would never execute until
the entire page was loaded. To fix, try reordering the script tags. If you find there’s a circular dependency, use
hqRequire as described above.

46.1. Table of contents 287

https://github.com/dimagi/commcare-hq/commit/15b436f77875f57d1e3d8d6db9b990720fa5dd6f#diff-73c73327e873d0e5f5f4e17c3251a1ceR100
https://requirejs.org/docs/whyamd.html
https://www.devbridge.com/articles/understanding-amd-requirejs#To-shim-or-not-to-shim
https://github.com/dimagi/commcare-hq/commit/15b436f77875f57d1e3d8d6db9b990720fa5dd6f#diff-73c73327e873d0e5f5f4e17c3251a1ceR100
https://github.com/dimagi/commcare-hq/pull/21604/files#diff-cf0be09b7db821551ac73dc3a9829e5eR24
https://github.com/dimagi/commcare-hq/commit/85286460a8b08812f82d6709c161b259e77165c4#diff-73c73327e873d0e5f5f4e17c3251a1ceR57

CommCareHQ Documentation, Release 1.0

Troubleshooting the RequireJS build process

Tactics that can help track down problems with the RequireJS build process, which usually manifest as errors that
happen on staging but not locally:

• To turn off minification, you can run build_requirejs with the --no_optimize option. This also makes the
script run much faster.

• To stop using the CDN, comment out resource_versions.js in hqwebapp/base.html. Note that this will still fetch
a few files, such as hqModules.js and {bootstrap_version}/requirejs_config.js, from the CDN. To
turn off the CDN entirely, comment out all of the code that manipulates resource_versions in build_requirejs.

• To mimic the entire build process locally:

– Collect static files: manage.py collectstatic --noinput This is necessary if you’ve made any
changes to {bootstrap_version}/requirejs.yml or {bootstrap_version}/requirejs_config.
js, since the build script pulls these files from staticfiles, not corehq.

– Compile translation files: manage.py compilejsi18n

– Run the build script: manage.py build_requirejs --local

∗ This will overwrite your local versions of {bootstrap_version}/requirejs_config.js and
resource_versions.js, so be cautious running it if you have uncommitted changes.

∗ This will also copy the generated bundle files from staticfiles back into corehq.

∗ If you don’t need to test locally but just want to see the results of dependency tracing, leave off the
--local. A list of each bundle’s contents will be written to staticfiles/build.txt, but no files
will be added to or overwritten in corehq.

46.1.5 Third-Party Libraries

This page discusses when to use the major, UI-framework-level, libraries we depend on, along with a few common
code conventions for these libraries.

jQuery

jQuery is available throughout HQ. We use jQuery 3.

Prefix jQuery variables with a $:

var $rows = $("#myTable tr"),
firstRow = $rows[0];

Underscore

Underscore is available throughout HQ for utilities.

288 Chapter 46. Dimagi JavaScript Guide

https://github.com/dimagi/commcare-hq/pull/18116/files#diff-1ecb20ffccb745a5c0fc279837215a25R433
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/hqwebapp/management/commands/build_requirejs.py
https://jquery.com/
http://underscorejs.org/

CommCareHQ Documentation, Release 1.0

Knockout

Knockout is also available throughout HQ and should be used for new code. We use Knockout 3.0.

Prefix knockout observables with an o:

var myModel = function (options) {
var self = this;
self.type = options.type;
self.oTotal = ko.observable(0);

};

. . . so that in HTML it’s apparent what you’re dealing with:

<input data-bind="visible: type === 'large' && oTotal() > 10, value: oTotal" />

Current total: </div>

Backbone and Marionette

Backbone is used in Web Apps. It should not be used outside of Web Apps. Within Web Apps, we use Marionette for
most UI management.

Yarn

We use yarn for package management, so new libraries should be added to package.json.

46.1.6 External Packages

This page discusses how to add new dependencies with yarn. Be cautious of adding new dependencies, which introduce
an indefinite maintenance burden.

Yarn

Yarn can manage components that contain HTML, CSS, JavaScript, fonts or even image files. Yarn doesn’t concatenate
or minify code or do anything else - it just installs the right versions of the packages you need and their dependencies.

Yarn packages

Yarn packages can be installed from a variety of sources, including a registered yarn package (a repo that has a
package.json file defined), a Github shorthand (<user or org>/<repo_name>), a Github URL, or just a plain
URL that points to a javascript file.

When you install a package, it will be installed in a directory called node_modules. For example if you were to run
yarn add jquery, you would find a directory node_modules/jquery.

46.1. Table of contents 289

http://knockoutjs.com/
http://backbonejs.org/
http://marionettejs.com/
https://classic.yarnpkg.com/en/
https://github.com/dimagi/commcare-hq/blob/master/package.json

CommCareHQ Documentation, Release 1.0

Specifying packages in package.json

To ensure a package gets installed for a project, you must specify it in the package.json file. This is equivalent to the
requirements.txt file for pip. Similar to pip install for python, for yarn, use yarn upgrade When specifying
a yarn package you can use many techniques. Here are a few examples:

// Installs the jquery package at version 1.11.1 to `node_modules/jquery`
"jquery": "1.11.1"

// Because `jquery-other` does not refer to a yarn package we must specify it in the
// versioning. Yarn will install this package to `node_modules/jquery-other`.
"jquery-other": "npm:jquery#1.2.0"

// This will install jquery from a github hash
"jquery-github": "jquery/jquery#44cb97e0cfc8d3e62bef7c621bfeba6fe4f65d7c"

To generalize, an install declaration looks like this:

<name>:<package>#<version>

Where <package> is optional if <name> == <package>. A package can be any of these things:

Type Example
Registered package name jquery
Git endpoint https://github.com/user/package.git
Git shorthand user/repo
URL http://example.com/script.js

There are more, but those are the important ones. Find the others here

A version can be any of these things:

Type Example
semver #1.2.3
version range #~1.2.3
Git tag #<git tag>
Git commit #<commit sha>
Git branch #<branch>

Using Yarn packages in HQ

To use these packages in HQ you need to find where the js file you are looking for. In the case of jquery, it stores the
minified jquery version in jquery/dist/jquery.min.js:

<script src="{% static 'jquery/dist/jquery.min.js' %}"></script>

Note: The node_modules bit is intentionally left off the path. Django already knows to look in that folder.

290 Chapter 46. Dimagi JavaScript Guide

https://github.com/user/package.git
http://example.com/script.js
https://classic.yarnpkg.com/en/docs/package-json

CommCareHQ Documentation, Release 1.0

46.1.7 Integration Patterns

Sometimes you want to have at your fingertips in client-side code things that live primarily live on the server. This
interface between JavaScript code and the data and systems we take for granted on the server can get messy and ugly.

This section lays out some conventions for getting the data you need to your JavaScript code and points you to some
frameworks we’ve set up for making particularly common things really easy.

JavaScript in Django Templates

The initial_page_data template tag and initial_page_data.js library are for passing generic data from python
to JavaScript.

In a Django template, use initial_page_data to register a variable. The data can be a template variable or a constant.

{% initial_page_data 'renderReportTables' True %}
{% initial_page_data 'defaultRows' report_table.default_rows|default:10 %}
{% initial_page_data 'tableOptions' table_options %}

Your JavaScript can then include <script src="{% static 'hqwebapp/js/initial_page_data.js' %}"></
script> and access this data using the same names as in the Django template:

var get = hqImport('hqwebapp/js/initial_page_data').get,
renderReportTables = get('renderReportTables'),
defaultRows = get('defaultRows'),
tableOptions = get('tableOptions');

When your JavaScript data is a complex object, it’s generally cleaner to build it in your view than to pass a lot of
variables through the Django template and then build it in JavaScript. So instead of a template with

{% initial_page_data 'width' 50 %}
{% initial_page_data 'height' 100 %}
{% initial_page_data 'thingType' type %}
{% if type == 'a' %}

{% initial_page_data 'aProperty' 'yes' %}
{% else %}

{% initial_page_data 'bProperty' 'yes' %}
{% endif %}

that then builds an object in JavaScript, when building your view context

options = {
'width': 50,
'height': 100,
'thingType': type,

})
if type == 'a':

options.update({'aProperty': 'yes'})
else:

options.update({'bProperty': 'yes'})
context.update({'options': options})

and then use a single {% initial_page_data 'thingOptions' %} in your Django template.

46.1. Table of contents 291

CommCareHQ Documentation, Release 1.0

Note that the initial_page_data approach uses a global namespace (as does the inline JavaScript approach). That
is a problem for another day. An error will be thrown if you accidentally register two variables with the same name
with initial_page_data.

Initial Page Data in Tests

Since initial page data contains server-provided data, JavaScript tests relying on it may need to fake it. The register
method allows setting initial page data in JavaScript instead of in a Django template:

hqDefine("my_app/js/spec/my_test", ["hqwebapp/js/initial_page_data"], function␣
→˓(initialPageData) {

initialPageData.register("apps", [{
"_id": "my-app_id",

}])
...

});

Partials

The initial page data pattern can get messy when working with partials: the initial_page_data tag generally needs
to go into a base template (a descendant of hqwebapp/base.html), not the partial template, so you can end up with tags
in a template - or multiple templates - not obviously related to the partial.

An alternative approach to passing server data to partials is to encode is as data- attributes. This can get out of hand
if there’s a lot of complex data to pass, but it often works well for partials that define a widget that just needs a couple
of server-provided options. Report filters typically use this approach.

I18n

Just like Django lets you use ugettext('...') in python and {% trans '...' %}, you can also use gettext('.
..') in any JavaScript.

For any page extending our main template, there’s nothing further you need to do to get this to work. If you’re interested
in how it works, any page with <script src="{% statici18n LANGUAGE_CODE %}"></script> in the template
will have access to the global django module and its methods.

If djangojs.js is missing, you can run ./manage.py compilejsi18n to regenerate it.

For more on Django JS I18n, check out https://docs.djangoproject.com/en/1.7/topics/i18n/translation/.

Django URLs

Just like you might use {% url ... %} to resolve a URL in a template

Widget Info

(or reverse(...) to resolve a URL in python), you can use {% registerurl %} to make a URL available in
javascript, through the initial_page_data.reverse utility (modeled after Django’s python reverse function).

in template

{% registerurl 'all_widget_info' domain %}

292 Chapter 46. Dimagi JavaScript Guide

https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/hqwebapp/templates/hqwebapp/base.html
https://docs.djangoproject.com/en/1.7/topics/i18n/translation/

CommCareHQ Documentation, Release 1.0

in js

var initial_page_data = hqImport('hqwebapp/js/initial_page_data');

$.get(initial_page_data.reverse('all_widget_info')).done(function () {...});

As in this example, prefer inlining the call to initial_page_data.reverse over assigning its return value to a
variable if there’s no specific motivation for doing so.

In addition, you may keep positional arguments of the url unfilled by passing the special string '---' to {%
registerurl %} and passing the argument value to initial_page_data.reverse instead.

in template

{% registerurl 'more_widget_info' domain '---' %}

in js

var initial_page_data = hqImport('hqwebapp/js/initial_page_data');
var widgetId = 'xxxx';
$.get(initial_page_data.reverse('more_widget_info', widgetId)).done(function () {...});

registerurl is essentially a special case of initial page data, and it gets messy when used in partials in the same way
as initial page data. Encoding a url in a DOM element, in an attribute like data-url, is sometimes cleaner than using
the registerurl template tag. See partials above for more detail.

Like initial page data, registerurl can be used in JavaScript tests directly:

hqDefine("my_app/js/spec/my_test", ["hqwebapp/js/initial_page_data"], function␣
→˓(initialPageData) {

initialPageData.registerUrl("apps", [{
"build_schema": "/a/---/data/export/build_full_schema/",

}])
...

});

Toggles and Feature Previews

In python you generally have the ability to check at any point whether a toggle or feature preview is enabled for a
particular user on a particular domain.

In JavaScript it’s even easier, because the user and domain are preset for you. To check, for example, whether the
IS_DEVELOPER toggle is enabled, use

COMMCAREHQ.toggleEnabled('IS_DEVELOPER')

and to check whether the 'ENUM_IMAGE' feature preview is enabled, use

COMMCAREHQ.previewEnabled('ENUM_IMAGE')

and that’s pretty much it.

On a page that doesn’t inherit from our main templates, you’ll also have to include

46.1. Table of contents 293

https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/integration-patterns.rst#partials

CommCareHQ Documentation, Release 1.0

<script src="{% static 'hqwebapp/js/hqModules.js' %}"></script>
<script src="{% static 'hqwebapp/js/toggles.js' %}"></script>
<script src="{% static 'style/js/bootstrap3/main.js' %}"></script>

Domain Privileges

In python you generally have the ability to check at any point whether a domain has a particular privilege.

In JavaScript, all privileges for the current domain are available and easy to check. For example, you can check whether
the domain has the export_ownership privilege by including the privileges JS module

hqDefine('your/js/module', [
...
'hqwebapp/js/privileges'

], function (
...
privileges

) {...};

and then checking for the privilege using

var hasPrivilege = privileges.hasPrivilege('export_ownership')

On a page that doesn’t inherit from our main templates, you’ll also have to include

<script src="{% static 'hqwebapp/js/privileges.js' %}"></script>

Remote Method Invocation

We use our own dimagi/jquery.rmi library to post ajax calls to methods in Django Views that have been tagged to
allow remote method invocation. Each RMI request creates a Promise for handling the server response.

dimagi/jquery.rmi was modeled after Djangular’s RMI). Since that project is now dead we have internalized the
relevant parts of it as corehq.util.jqueryrmi.

The README for dimagi/jquery.rmi has excellent instructions for usage.

The notifications app is a good example resource to study how to use this library:

• NotificationsServiceRMIView is an example of the type of view that can accept RMI posts.

• NotificationsService.ko.js is an example of the client-side invocation and handling.

• style/bootstrap3/base.html has a good example for usage of NotificationsService.

<script type="text/javascript" src="{% static '/notifications/js/NotificationsService.ko.
→˓js' %}"></script>
<script type="text/javascript">

$(function () {
$('#js-settingsmenu-notifications').startNotificationsService('{% url

→˓'notifications_service' %}');
});

</script>

NOTE: It is not always the case that the RMI view is a separate view from the one hosting the client-side requests and
responses. More often it’s the same view, but the current examples are using Angular.js as of this writing.

294 Chapter 46. Dimagi JavaScript Guide

http://django-angular.readthedocs.org/en/latest/remote-method-invocation.html
http://github.com/dimagi/jquery.rmi

CommCareHQ Documentation, Release 1.0

46.1.8 Security

JavaScript and HTML code is subject to XSS attacks if user input is not correctly sanitized.

Python

Read the Django docs on XSS

We occasionally use the safe filter within templates and the mark_safe function in views.

Read the docs on Django’s html and safestring utils.

JavaScript templates

HQ uses Underscore templates templates in some areas. Default to using <%- ... %> syntax to interpolate values,
which properly escapes.

Any value interpolated with <%= ... %> must be previously escaped.

JavaScript code

In Knockout, be sure to escape any value passed to an html binding.

The DOMPurify library is available to sanitize user input. DOMPurify works by stripping potentially malicious
markup. It does not escape input.

46.1.9 Static Files

Static files include any css, js, and image files that are not dynamically generated during runtime. css is typically
compiled from less and minified prior to server runtime. js files are collected, combined, and minified prior to
server runtime. As of this writing we don’t compile our JavaScript from a higher level scripting language. Image files
generally stay as-is. The only ‘dynamic’ images come from file attachments in our database.

Due to their static natures, the primary objective for static files is to make as few requests to them during page load,
meaning that our goal is to combine static files into one larger, minified file when possible. An additional goal is to
ensure that the browser caches the static files it is served to make subsequent page loads faster.

Collectstatic

Collectstatic is a Django management command that combs through each app’s static directory and pulls all the
static files together under one location, typically a folder at the root of the project.

During deploy, manage.py collectstatic --noinput -v 0 is executed during the __do_collecstatic phase.
The exact static files directory is defined by settings.STATIC_ROOT, and the default is named staticfiles.

Since Django Compressor is run after collectstatic, this movement of less files poses an issue for files that
reference relative imports outside of the app’s static directory. For instance, style’s variables.less references
bootstrap/variables.less, which is in the node_modules directory.

In order to fix the moved references, it is required that manage.py fix_less_imports_collectstatic is run after
collectstatic.

Once you run this, it’s a good idea to regenerate static file translations with manage.py compilejsi18n.

In short, before testing anything that intends to mimic production static files. First run:

46.1. Table of contents 295

https://owasp.org/www-community/attacks/xss/
https://docs.djangoproject.com/en/4.0/topics/security/#cross-site-scripting-xss-protection
https://docs.djangoproject.com/en/4.0/ref/utils/#module-django.utils.html
https://docs.djangoproject.com/en/4.0/ref/utils/#module-django.utils.safestring
http://underscorejs.org/#template
https://knockoutjs.com/documentation/html-binding.html
https://github.com/cure53/DOMPurify

CommCareHQ Documentation, Release 1.0

manage.py collectstatic
manage.py fix_less_imports_collectstatic
manage.py compilejsi18n

Compression

Django Compressor is the library we use to handle compilation of less files and the minification of js and compiled
css files.

Compressor blocks are defined inside the {% compress css %}{% endcompress %} or {% compress js %}{%
endcompress %} blocks in Django templates. Each block will be processed as one unit during the different steps of
compression.

Best practice is to wrap all script tags and stylesheet links in compress blocks, in order to reduce file size and number
of server requests made per page.

There are three ways of utilizing Django Compressor’s features:

1. Dev Setup: Server-side on the fly less compilation

This does not combine any files in compress blocks, and as no effect on js blocks. This is the default dev configuration.

How is this enabled?

Make sure your localsettings.py file has the following set:

COMPRESS_ENABLED = False
COMPRESS_OFFLINE = False

2. Production-like Setup: Compress Offline

Pros:

• Closest mirror to production’s setup.

• Easy to flip between Option 2 and Option 3

Cons:

• If you’re doing a lot of front end changes, you have to re-run collectstatic,
fix_less_imports_collectstatic, and compress management commands and restart the server
AFTER each change. This will be a pain!

NOTE: If you are debugging OfflineCompressionErrors from production or staging, you should be compressing
offline locally to figure out the issue.

296 Chapter 46. Dimagi JavaScript Guide

https://django-compressor.readthedocs.org/en/latest/

CommCareHQ Documentation, Release 1.0

How to enable?

Do everything from Option 2 for LESS compilers setup.

Have the following set in localsettings.py:

COMPRESS_ENABLED = True
COMPRESS_OFFLINE = True

Notice that COMPRESS_MINT_DELAY, COMPRESS_MTIME_DELAY, and COMPRESS_REBUILD_TIMEOUT are not set.

Map Files

#todo

CDN

A content delivery network or content distribution network (CDN) is a globally distributed network of proxy servers
deployed in multiple data centers. The goal of a CDN is to serve content to end-users with high availability and high
performance. CDNs serve a large fraction of the Internet content today, including web objects (text, graphics and
scripts), downloadable objects (media files, software, documents), applications (e-commerce, portals).

CDN for HQ

CommCare HQ uses a CloudFront as CDN to deliver its staticfiles. CloudFront is configured in the Amazon Console.
You can find credentials in the dimagi shared keypass under AWS Dev Account. CloudFront provides us with two
URLs. A CDN URL for staging and one for production. On compilation of the static files, we prefix the static file with
the CloudFront URL. For example:

Path to static file
<script src="/static/js/awesome.js"/>
This gets converted to
<script src="<some hash>.cloudfront.net/static/js/awesome.js"/>

When a request gets made to the cloudfront URL, amazon serves the page from the nearest edge node if it has the file
cached. If it doesn’t have the file, it will go to our server and fetch the file. By default the file will live on the server for
24 hours.

Cache Busting

In order to ensure that the CDN has the most up to date version, we append a version number to the end of the javascript
file that is a sha of the file. This infrastructure was already in place for cache busting. This means that awesome.js will
actually be rendered as awesome.js?version=123. The CDN recognizes this as a different static file and then goes
to our nginx server to fetch the file.

This cache busting is primarily handled by the resource_static management command, which runs during de-
ploy. This command hashes the contents of every static file in HQ and stores the resulting hash codes in a YAML
file, resource_versions.yml. This file is also updated by the build_requirejs command during deploy, adding
versions for RequireJS bundle files - these files are auto-generated by build_requirejs, so they don’t exist yet when
resource_static runs. The static template tag in hq_shared_tags then handles appending the version number
to the script tag’s src.

46.1. Table of contents 297

https://us-west-2.console.aws.amazon.com/console/home

CommCareHQ Documentation, Release 1.0

Note that this cache busting is irrelevant to files that are contained within a compress block. Each compressed block
generated a file that contains a hash in the filename, so there’s no need for the URL parameter.

46.1.10 Inheritance

We use a functional approach to inheritance, in this style:

var animal = function(options) {
var self = {},

location = 0,
speed = 5;

self.name = options.name;

self.run = function(time) {
location += time * speed;

};

self.getLocation = function() {
return location;

}

return self;
};

var bear = animal({ name: 'Oso' });
bear.run(1);
// bear.name => "Oso"
// bear.getLocation() => 5
// bear.location => undefined

var bird = function(options) {
var self = animal(options);

self.fly = function(time) {
// Flying is fast
self.run(time);
self.run(time);

};

return self;
};

var duck = bird({ name: 'Pato' });
duck.run(1);
duck.fly(1);
// duck.name => "Pato"
// duck.getLocation => 15

Note that: - A class-like object is defined as a function that returns an instance. - The instance is initialized to an empty
object, or to an instance of the parent class if there is one. - Create a private member by adding a local variable. - Create
a public member by attaching a variable to the instance that will be returned. - Class name are lowerFirstCamelCase,
distinct from UpperFirstCamelCase which is used for built-in objects like Date that require the new operator.

Avoid prototypical inheritance, which does not support information hiding as well.

298 Chapter 46. Dimagi JavaScript Guide

CommCareHQ Documentation, Release 1.0

Avoid classical-style inheritance (the new operator) because it also isn’t great for information hiding and because for-
getting to use new when creating an object can lead to nasty bugs.

Our approach to inheritance is heavily influenced by Crockford’s Javascript: The Good Parts, which is good back-
ground reading.

Moving from classical inheritance to functional

Most of our code uses functional inheritance, while some of it uses classical inheritance. We don’t have an active plan
to replace all classical inheritance with functional, but if you have a reason to chang a particular classical class, it can
often be converted to a functional style fairly mechanically:

• In the class definition, make sure the instance is initialized to an empty object instead of this. There’s usually
a var self = this; line that should be switched to var self = {};

• Throughout the class definition, make sure the code is consistently using self instead of this

• Make sure the class definition returns self at the end (typically it won’t return anything)

• Update class name from UpperCamelCase to lowerCamelCase

• Remove new operator from anywhere the class is instantiated

Sample pull request

Code that actually manipulates the prototype needs more thought.

46.1.11 Code Review

All of the general standards of code review apply equally to JavaScript. See Code Contributions and Review for general
guidance on code review. This document summarizes points to keep in mind specifically when reviewing JavaScript
in CommCare HQ.

Language

Make any user-facing language as clear as possible.

• Proofread it.

• Limit jargon and overly technical language (using pre-existing HQ terms is okay)

• Don’t let internal names bleed into user-facing content

– “Lookup tables” not “fixtures”

– “Web apps” not “cloudcare”

– “Mobile worker” not “mobile user” or “CommCare User”

– etc.

46.1. Table of contents 299

https://github.com/dimagi/commcare-hq/pull/19938
https://github.com/dimagi/open-source/blob/master/docs/code_review.md

CommCareHQ Documentation, Release 1.0

Translations

• All user-facing text should be translated with gettext, which is globally available in HQ JavaScript.

• Strings that contain variables should use _.template as described in the translations docs.

Time Zones

• All user-facing dates and times should be displayed in a time zone that will make sense for the user. Look at
usage of UserTime and more generally at corehq.util.timezones.

Security

• Use <%- ... %> in Underscore templates to HTML escape values.

• Use DomPurify to HTML escape user input that will be displayed, but not in a template.

Delays and Errors

• Any potentially long-running requests, including all AJAX requests, should use a spinner or similar indicator.

– jQuery: Use disableButton to disable & add a spinner, then enableButton when the request succeeds
or fails.

– Knockout: These usally need custom-but-usually-short disable/spinner code, probably using a boolean
observable and a disable binding in the HTML.

– There may not be spinner/disable code if there’s an HTML form and it uses the disable-on-submit class.

• Any AJAX requests should have an error callback.

– This usually doesn’t need to be fancy, just to display a generic “Try again”-type error near the action that
was taken. Most requests aren’t error-prone, this is typically just to defend against generic platform errors
like the user getting logged out.

Coding Standards

Again, standards in JavaScript are largely the same as in Python. However, there are a few issues that are either specific
to JavaScript or more frequently arise in it:

• Naming. JavaScript is often messy because it sometimes uses server naming conventions, which are different,
for server data. Push the author to leave the code better than they found it. Don’t allow the same identifier to be
used with different capitalizations, e.g., firstName and first_name in the same file. Find a synonym for one
of them.

• JavaScript should be enclosed in modules and those modules should explicitly declare dependencies, as in the
first code block here. Exceptions are app manager, reports, and web apps.

• Avoid long lists of params. Prefer kwargs-style objects and use assert_properties to verify they contain the
expected options.

• Make sure any js access of initial page data is guaranteed not to happen until the page is fully loaded. Not doing
so risks a race condition that will break the page. Keep an eye out that any new initial page data accessed in js is
made available in HTML (usually not an issue unless the author didn’t test at all).

• Prefer knockout to jQuery. Avoid mixing knockout and jQuery. Recall that you don’t have to solve the author’s
problems. It’s enough to say, “This is a lot of jQuery, have you considered making a knockout model?”

300 Chapter 46. Dimagi JavaScript Guide

https://commcare-hq.readthedocs.io/translations.html#tagging-strings-in-javascript
https://commcare-hq.readthedocs.io/js-guide/dependencies.html#how-do-i-know-whether-or-not-im-working-with-requirejs
https://commcare-hq.readthedocs.io/js-guide/integration-patterns.html#javascript-in-django-templates

CommCareHQ Documentation, Release 1.0

46.1.12 Testing

Best Practices

Writing good tests in javascript is similar to writing good tests in any other language. There are a few best practices
that are more pertinent to javascript testing.

Mocking

When mocks are needed, use the sinon.js framework.

Setup

In order to run the javascript tests you’ll need to install the required npm packages:

$ yarn install --frozen-lockfile

It’s recommended to install grunt globally in order to use grunt from the command line:

$ npm install -g grunt
$ npm install -g grunt-cli

In order for the tests to run the development server needs to be running on port 8000.

Test Organization

HQ’s JavaScript tests are organized around django apps. Test files are stored in the django app they test. Tests infras-
tructure is stored in its own django app, mocha.

Most django apps with JavaScript tests have a single set of tests. These will have an HTML template in corehq/apps/
<app_name>/templates/<app_name>/spec/mocha.html, which inherits from the mocha app’s base template.
Test cases are stored in corehq/apps/<app_name>/static/<app_name>/js/spec/<test_suite_name>_spec.
js

A few django apps have multiple test “configs” that correspond to different templates. Each config template will be
in corehq/apps/<app>/templates/<app>/spec/<config>/mocha.html and its tests will be in corehq/apps/
<app_name>/static/<app_name>/<config>/spec/. These are defined in Gruntfile.js as <app_name>/
<config_name>, e.g., cloudcare/form_entry.

Dependency Management

Tests are one of the few areas of HQ’s JavaScript that do not use RequireJS. Instead, dependencies are included in the
relevant HTML template as script tags.

46.1. Table of contents 301

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/mocha/templates/mocha/base.html

CommCareHQ Documentation, Release 1.0

Running tests from the command line

To run the javascript tests for a particular app run:

$ grunt test:<app_name> // (e.g. grunt test:app_manager)

To list all the apps available to run:

$ grunt list

Running tests from the browser

To run a django app’s tests from the browser, visit this url:

http://localhost:8000/mocha/<app_name>

To run a specific config:

http://localhost:8000/mocha/<app_name>/<config> // (e.g. http://localhost:8000/mocha/
→˓cloudcare/form_entry)

Adding a new app or config

There are three steps to adding a new app:

1. Add the django app name to the Gruntfile.js file.

2. Create a mocha template in corehq/apps/<app>/templates/<app>/spec/mocha.html to run tests. See an
example on here.

3. Create tests that are included in the template in corehq/apps/<app>/static/<app>/spec/

To add an additional config to an existing app, specify the app in the Gruntfile.js like this:

<app_name>/<config> // (e.g. cloudcare/form_entry)

The template and tests then also being in config-specific directories, as described above.

46.1.13 Linting

Our recommended linter is ESLint. This is what our Stickler configuration uses.

Running ESLint locally

The best time to find out about a code error (or stylistic faux pas) is when you type it out. For this reason, you should
run a linter locally.

Install it through npm:
$ npm install -g eslint

Try it out locally if you like
$ eslint path/to/file.js

302 Chapter 46. Dimagi JavaScript Guide

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/app_manager/templates/app_manager/spec/mocha.html
http://eslint.org/
https://github.com/dimagi/commcare-hq/blob/679d3ca7cf81d7808b6792a72046cedd891ed62f/.stickler.yml#L10

CommCareHQ Documentation, Release 1.0

PyCharm

PyCharm has different ways of setting this up depending on the version.

• Instructions for 2016.1

• Instructions for 2017.3

If you get errors you may need to downgrade ESLint to version 5. This appears to be an issue on all versions of PyCharm
prior to 2019.1.3.

Vim

NeoMake

Install NeoMake if you haven’t already.

let g:neomake_javascript_enabled_makers = ['eslint']

Syntastic

Install syntastic if you haven’t already.

let g:syntastic_javascript_checkers = ['eslint']

Configuring our lint rules

The .eslintrc.js file in the root of the commcare-hq repository defines the rules to check.

While this configuration is fairly stable, see the docs for help should you need to update it.

Looking up rules

Let’s say you ran eslint on this code

var obj = {
foo: 3,
foo: 5

};

You’d probably get an error like: > Duplicate key ‘foo’. (no-dupe-keys)

The rule then is no-dupe-keys. You can look it up on the rules page for a description.

46.1. Table of contents 303

https://www.jetbrains.com/help/pycharm/2016.1/using-javascript-code-quality-tools.html?origin=old_help#ESLint
https://www.jetbrains.com/help/pycharm/2017.3/eslint.html
https://intellij-support.jetbrains.com/hc/en-us/community/posts/360004195120-TypeError-this-cliEngine-is-not-a-constructor
https://github.com/benekastah/neomake
https://github.com/scrooloose/syntastic
https://github.com/dimagi/commcare-hq/blob/master/.eslintrc.js
https://eslint.org/docs/user-guide/configuring#configuring-rules
http://eslint.org/docs/rules/

CommCareHQ Documentation, Release 1.0

Adding an exception

A foolish consistency is the hobgoblin of simple minds. Sometimes it IS okay to use console.log. Here are a couple
ways to say “yes, this IS okay”.

console.log('foo'); // eslint-disable-line no-console

// eslint-disable-next-line no-console
console.log('foo');

See the docs for more options to disable rules for on a case by case basis.

304 Chapter 46. Dimagi JavaScript Guide

https://eslint.org/docs/user-guide/configuring#disabling-rules-with-inline-comments

CHAPTER

FORTYSEVEN

TESTING INFRASTRUCTURE

Tests are run with nose. Unlike many projects that use nose, tests cannot normally be invoked with the nosetests
command because it does not perform necessary Django setup. Instead, tests are invoked using the standard Django
convention: ./manage.py test.

47.1 Nose plugins

Nose plugins are used for various purposes, some of which are optional and can be enabled with command line param-
eters or environment variables. Others are required by the test environment and are always enabled. Custom plugins
are registered with django-nose via the NOSE_PLUGINS setting in testsettings.

One very important always-enabled plugin applies patches before tests are run. The patches remain in effect for the
duration of the test run unless utilities are provided to temporarily disable them. For example, sync_users_to_es is
a decorator/context manager that enables syncing of users to ElasticSearch when a user is saved. Since this syncing
involves custom test setup not done by most tests it is disabled by default, but it can be temporarily enabled using
sync_users_to_es in tests that need it.

305

https://nose.readthedocs.io/en/latest/man.html
https://github.com/dimagi/django-nose
https://github.com/dimagi/commcare-hq/blob/master/testsettings.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/tests/noseplugins/patches.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/util/es/testing.py

CommCareHQ Documentation, Release 1.0

306 Chapter 47. Testing infrastructure

CHAPTER

FORTYEIGHT

TESTING BEST PRACTICES

48.1 Test set up

Doing a lot of work in the setUp call of a test class means that it will be run on every test. This quickly adds a lot of
run time to the tests. Some things that can be easily moved to setUpClass are domain creation, user creation, or any
other static models needed for the test.

Sometimes classes share the same base class and inherit the setUpClass function. Below is an example:

BAD EXAMPLE

class MyBaseTestClass(TestCase):

@classmethod
def setUpClass(cls):

...

class MyTestClass(MyBaseTestClass):

def test1(self):
...

class MyTestClassTwo(MyBaseTestClass):

def test2(self):
...

In the above example the setUpClass is run twice, once for MyTestClass and once for MyTestClassTwo. If
setUpClass has expensive operations, then it’s best for all the tests to be combined under one test class.

GOOD EXAMPLE

class MyBigTestClass(TestCase):

@classmethod
def setUpClass(cls):

...

def test1(self):
...

(continues on next page)

307

CommCareHQ Documentation, Release 1.0

(continued from previous page)

def test2(self):
...

However this can lead to giant Test classes. If you find that all the tests in a package or module are sharing the same
set up, you can write a setup method for the entire package or module. More information on that can be found here.

48.2 Test tear down

It is important to ensure that all objects you have created in the test database are deleted when the test class finishes
running. This often happens in the tearDownmethod or the tearDownClassmethod. However, unneccessary cleanup
“just to be safe” can add a large amount of time onto your tests.

48.3 Using SimpleTestCase

The SimpleTestCase runs tests without a database. Many times this can be achieved through the use of the mock library.
A good rule of thumb is to have 80% of your tests be unit tests that utilize SimpleTestCase, and then 20% of your
tests be integration tests that utilize the database and TestCase.

CommCare HQ also has some custom in mocking tools.

• Fake Couch - Fake implementation of CouchDBKit api for testing purposes.

• ESQueryFake - For faking ES queries.

48.4 Squashing Migrations

There is overhead to running many migrations at once. Django allows you to squash migrations which will help speed
up the migrations when running tests.

308 Chapter 48. Testing best practices

http://pythontesting.net/framework/nose/nose-fixture-reference/#package
http://www.voidspace.org.uk/python/mock/
https://github.com/dimagi/fakecouch
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/es/fake/es_query_fake.py

CHAPTER

FORTYNINE

ANALYZING TEST COVERAGE

Test coverage is computed on travis using coverage.py and sent to codecov for aggregation and analysis.

This page goes over some basic ways to analyze code coverage locally.

49.1 Using coverage.py

First thing is to install the coverage.py library:

$ pip install coverage

Now you can run your tests through the coverage.py program:

$ coverage run manage.py test commtrack

This will create a binary commcare-hq/.coverage file (that is already ignored by our .gitignore) which contains all the
magic bits about what happened during the test run.

You can be as specific or generic as you’d like with what selection of tests you run through this. This tool will track
which lines of code in the app have been hit during execution of the tests you run. If you’re only looking to analyze
(and hopefully increase) coverage in a specific model or utils file, it might be helpful to cut down on how many tests
you’re running.

49.1.1 Make an HTML view of the data

The simplest (and probably fastest) way to view this data is to build an HTML view of the code base with the coverage
data:

$ coverage html

This will build a commcare-hq/coverage-report/ directory with a ton of HTML files in it. The important one is
commcare-hq/coverage-report/index.html.

309

CommCareHQ Documentation, Release 1.0

49.1.2 View the result in Vim

Install coveragepy.vim (https://github.com/alfredodeza/coveragepy.vim) however you personally like to install plugins.
This plugin is old and out of date (but seems to be the only reasonable option) so because of this I personally think the
HTML version is better.

Then run :Coveragepy report in Vim to build the report (this is kind of slow).

You can then use :Coveragepy hide and :Coveragepy show to add/remove the view from your current buffer.

310 Chapter 49. Analyzing Test Coverage

https://github.com/alfredodeza/coveragepy.vim

CHAPTER

FIFTY

MOCHA TESTS

50.1 Adding a new app to test

There are three steps to adding a new app to test:

1. Add the app name to the Gruntfile.js file. Note: the app has to correspond to an actual Django app.

2. Create a mocha template in corehq/apps/<app>/templates/<app>/spec/mocha.html to run tests. See an
example on here.

3. Create tests that are included in the template in corehq/apps/<app>/static/<app>/spec/

50.2 Creating an alternative configuration for an app

Occasionally there’s a need to use a different mocha template to run tests for the same app. In order to create multiple
configurations, specify the app in the Gruntfile.js like this: <app>#<config>

Now mocha will look for that template in corehq/apps/<app>/templates/<app>/spec/<config>/mocha.html

The url to visit that test suite is http://localhost:8000/mocha/<app>/<config>

311

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/app_manager/templates/app_manager/spec/mocha.html

CommCareHQ Documentation, Release 1.0

312 Chapter 50. Mocha Tests

CHAPTER

FIFTYONE

WRITING TESTS BY USING ES FAKES

In order to be able to use these ES fakes. All calls to ES in the code you want to test

must go through one of the ESQuery subclasses, such as UserES or GroupES.

In testing, a fake is a component that provides an actual implementation of an API,

but which is incomplete or otherwise unsuitable for production.

(See http://stackoverflow.com/a/346440/240553 for the difference between fakes, mocks, and stubs.)

ESQueryFake and its subclasses (UserESFake, etc.) do just this for the ESQuery

classes. Whereas the real classes hand off the work to an Elasticsearch cluster,

the fakes do the filtering, sorting, and slicing in python memory, which is lightweight

and adequate for tests. Beware that this method is, of course,

inadequate for assuring that the ESQuery classes themselves are producing

the correct Elasticsearch queries, and also introduces the potential for bugs to go

unnoticed because of bugs in ESQueryFake classes themselves. But assuming correct

implementations of the fakes, it does an good job of testing the calling code,

which is usually the primary subject of a test.

The anatomy of a fake is something like this:

• For each real ESQuery subclass (I’ll use UserES as the example), there is a corresponding fake (UserESFake).
In cases where such a fake does not exist when you need it, follow the instructions below for getting started on a
new fake.

• For each filter method or public method used on the ESQuery base class a method should exist on ESQueryFake
that has the same behavior

• For each filter method on UserES, a method should exist on UserESFake that has the same behavior.

New fakes and methods are implemented only as actually needed by tests

(otherwise it’s very difficult to be confident the implementations are correct),

so until some mythical future day in which all code that relies on ES goes through

an ESQuery subclass and is thoroughly tested, the fake implementations are

intentionally incomplete. As such, an important part of their design is that they alert

their caller (the person using them to write a test) if the code being tested calls a

method on the fake that is not yet implemented. Since more often than not a number of

313

http://stackoverflow.com/a/346440/240553

CommCareHQ Documentation, Release 1.0

methods will need to be added for the same test, the fakes currently are designed to have

each call to an unimplemented filter result in a no-op, and will output a logging statement

telling the caller how to add the missing method. This lets the caller run the test once

to see a print out of every missing function, which they can then add in one go and re-run

the tests. (The danger is that they will miss the logging output; however in cases where

a filter method is missing, it is pretty likely that the test will fail which will prod

them to look further and find the logging statement.)

51.1 How to set up your test to use ES fakes

Patch your test to use UserESFake (assuming you want to patch UserES),

making sure to patch UserES in the files in which it is used, not the file in which

it is declared

@mock.patch('corehq.apps.users.analytics.UserES', UserESFake)

@mock.patch('corehq.apps.userreports.reports.filters.choice_providers.UserES',␣
→˓UserESFake)

class MyTest(SimpleTestCase):

def setUp(self):

...

UserESFake.save*doc(user.*doc)

...

def tearDown(self):

UserESFake.reset_docs()

51.2 How to set up a new ES fake

Adding a new fake is very easy. See corehq.apps.es.fake.users_fake for a simple example.

314 Chapter 51. Writing tests by using ES fakes

CHAPTER

FIFTYTWO

PROFILING

52.1 Practical guide to profiling a slow view or function

This will walkthrough one way to profile slow code using the @profile decorator.

At a high level this is the process:

1. Find the function that is slow

2. Add a decorator to save a raw profile file that will collect information about function calls and timing

3. Use libraries to analyze the raw profile file and spit out more useful information

4. Inspect the output of that information and look for anomalies

5. Make a change, observe the updated load times and repeat the process as necessary

52.1.1 Finding the slow function

This is usually pretty straightforward. The easiest thing to do is typically use the top-level entry point for a view call.
In this example we are investigating the performance of commtrack location download, so the relevant function would
be commtrack.views.location_export.

@login_and_domain_required
def location_export(request, domain):

response = HttpResponse(mimetype=Format.from_format('xlsx').mimetype)
response['Content-Disposition'] = 'attachment; filename="locations.xlsx"'
dump_locations(response, domain)
return response

52.1.2 Getting profile output on stderr

Use the profile decorator to get profile output printed to stderr.

from dimagi.utils import profile
@login_and_domain_required
@profile
def location_export(request, domain):

...

profile may also be used as a context manager. See the docstring for more details.

315

https://github.com/dimagi/dimagi-utils/blob/master/dimagi/utils/decorators/profile.py

CommCareHQ Documentation, Release 1.0

52.1.3 Getting a profile dump

To get a profile dump, simply add the following decoration to the function.

from dimagi.utils.decorators.profile import profile_dump
@login_and_domain_required
@profile_dump('locations_download.prof')
def location_export(request, domain):

response = HttpResponse(mimetype=Format.from_format('xlsx').mimetype)
response['Content-Disposition'] = 'attachment; filename="locations.xlsx"'
dump_locations(response, domain)
return response

Now each time you load the page a raw dump file will be created with a timestamp of when it was run. These are
created in /tmp/ by default, however you can change it by adding a value to your settings.py like so:

PROFILE_LOG_BASE = "/home/czue/profiling/"

Note that the files created are huge; this code should only be run locally.

52.1.4 Profiling in production

The same method can be used to profile functions in production. Obviously we want to be able to turn this on and off
and possibly only profile a limited number of function calls.

This can be accomplished by using an environment variable to set the probability of profiling a function. Here’s an
example:

@profile_dump('locations_download.prof', probability=float(os.getenv('PROFILE_LOCATIONS_
→˓EXPORT', 0))
def location_export(request, domain):

....

By default this wil not do any profiling but if the PROFILE_LOCATIONS_EXPORT environment variable is set to a
value between 0 and 1 and the Django process is restarted then the function will get profiled. The number of profiles
that are done will depend on the value of the environment variable. Values closer to 1 will get more profiling.

You can also limit the total number of profiles to be recorded using the limit keyword argument. You could also expose
this via an environment variable or some other method to make it configurable:

@profile_dump('locations_download.prof', 1, limit=10)
def location_export(request, domain):

....

Warning: In a production environment the limit may not apply absolutely since there are likely multiple processes
running in which case the limit will get applied to each one. Also, the limit will be reset if the processes are restarted.

Any profiling in production should be closely monitored to ensure that it does not adversely affect performance or
fill up available disk space.

316 Chapter 52. Profiling

CommCareHQ Documentation, Release 1.0

52.1.5 Creating a more useful output from the dump file

The raw profile files are not human readable, and you need to use something like cProfile to make them useful.

SnakeViz is a great option for viewing .prof files:

$ pip install snakeviz
$ snakeviz /path/to/profile_dump.prof

Alternately you can use a script that will output a readable version of the profile data to the console. You can find such
a script in the commcarehq-scripts repository. You can read the source of that script to generate your own analysis, or
just use it directly as follows:

$./reusable/convert_profile.py /path/to/profile_dump.prof

52.1.6 Reading the output of the analysis file

The analysis file is broken into two sections. The first section is an ordered breakdown of calls by the cumulative time
spent in those functions. It also shows the number of calls and average time per call.

The second section is harder to read, and shows the callers to each function.

This analysis will focus on the first section. The second section is useful when you determine a huge amount of time is
being spent in a function but it’s not clear where that function is getting called.

Here is a sample start to that file:

loading profile stats for locations_download/commtrack-location-20140822T205905.prof
361742 function calls (355960 primitive calls) in 8.838 seconds

Ordered by: cumulative time, call count
List reduced from 840 to 200 due to restriction <200>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 8.838 8.838 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/views.py:336(location_export)
1 0.011 0.011 8.838 8.838 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/util.py:248(dump_locations)
194 0.001 0.000 8.128 0.042 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/models.py:136(parent)
190 0.002 0.000 8.121 0.043 /home/czue/src/commcare-hq/corehq/apps/

→˓cachehq/mixins.py:35(get)
190 0.003 0.000 8.021 0.042 submodules/dimagi-utils-src/dimagi/utils/

→˓couch/cache/cache_core/api.py:65(cached_open_doc)
190 0.013 0.000 7.882 0.041 /home/czue/.virtualenvs/commcare-hq/local/

→˓lib/python2.7/site-packages/couchdbkit/client.py:362(open_doc)
396 0.003 0.000 7.762 0.020 /home/czue/.virtualenvs/commcare-hq/local/

→˓lib/python2.7/site-packages/http_parser/_socketio.py:56(readinto)
396 7.757 0.020 7.757 0.020 /home/czue/.virtualenvs/commcare-hq/local/

→˓lib/python2.7/site-packages/http_parser/_socketio.py:24(<lambda>)
196 0.001 0.000 7.414 0.038 /home/czue/.virtualenvs/commcare-hq/local/

→˓lib/python2.7/site-packages/couchdbkit/resource.py:40(json_body)
196 0.011 0.000 7.402 0.038 /home/czue/.virtualenvs/commcare-hq/local/

→˓lib/python2.7/site-packages/restkit/wrappers.py:270(body_string)
(continues on next page)

52.1. Practical guide to profiling a slow view or function 317

https://docs.python.org/2/library/profile.html#module-cProfile
https://jiffyclub.github.io/snakeviz/
https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/convert_profile.py

CommCareHQ Documentation, Release 1.0

(continued from previous page)

590 0.019 0.000 7.356 0.012 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/http_parser/reader.py:19(readinto)

198 0.002 0.000 0.618 0.003 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/couchdbkit/resource.py:69(request)

196 0.001 0.000 0.616 0.003 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/restkit/resource.py:105(get)

198 0.004 0.000 0.615 0.003 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/restkit/resource.py:164(request)

198 0.002 0.000 0.605 0.003 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/restkit/client.py:415(request)

198 0.003 0.000 0.596 0.003 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/restkit/client.py:293(perform)

198 0.005 0.000 0.537 0.003 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/restkit/client.py:456(get_response)

396 0.001 0.000 0.492 0.001 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/http_parser/http.py:135(headers)

790 0.002 0.000 0.452 0.001 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/http_parser/http.py:50(_check_headers_complete)

198 0.015 0.000 0.450 0.002 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/http_parser/http.py:191(__next__)
1159/1117 0.043 0.000 0.396 0.000 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/jsonobject/base.py:559(__init__)

13691 0.041 0.000 0.227 0.000 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/jsonobject/base.py:660(__setitem__)

103 0.005 0.000 0.219 0.002 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/util.py:65(location_custom_properties)

103 0.000 0.000 0.201 0.002 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:70(<genexpr>)
333/303 0.001 0.000 0.190 0.001 /home/czue/.virtualenvs/commcare-hq/local/

→˓lib/python2.7/site-packages/jsonobject/base.py:615(wrap)
289 0.002 0.000 0.185 0.001 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/models.py:31(__init__)
6 0.000 0.000 0.176 0.029 /home/czue/.virtualenvs/commcare-hq/local/

→˓lib/python2.7/site-packages/couchdbkit/client.py:1024(_fetch_if_needed)

See also:
Description of columns

The most important thing to look at is the cumtime (cumulative time) column. In this example we can see that the
vast majority of the time (over 8 of the 8.9 total seconds) is spent in the cached_open_doc function (and likely the
library calls below are called by that function). This would be the first place to start when looking at improving profile
performance. The first few questions that would be useful to ask include:

• Can we optimize the function?

• Can we reduce calls to that function?

• In the case where that function is hitting a database or a disk, can the code be rewritten to load things in bulk?

In this practical example, the function is clearly meant to already be caching (based on the name alone) so it’s possible
that the results would be different if caching was enabled and the cache was hot. It would be good to make sure we test
with those two parameters true as well. This can be done by changing your localsettings file and setting the following
two variables:

318 Chapter 52. Profiling

https://docs.python.org/2/library/profile.html#instant-user-s-manual

CommCareHQ Documentation, Release 1.0

COUCH_CACHE_DOCS = True
COUCH_CACHE_VIEWS = True

Reloading the page twice (the first time to prime the cache and the second time to profile with a hot cache) will then
produce a vastly different output:

loading profile stats for locations_download/commtrack-location-20140822T211654.prof
303361 function calls (297602 primitive calls) in 0.484 seconds

Ordered by: cumulative time, call count
List reduced from 741 to 200 due to restriction <200>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.484 0.484 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/views.py:336(location_export)
1 0.004 0.004 0.484 0.484 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/util.py:248(dump_locations)
1159/1117 0.017 0.000 0.160 0.000 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/jsonobject/base.py:559(__init__)

4 0.000 0.000 0.128 0.032 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:62(filter_by_type)

4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/couchdbkit/client.py:986(all)

103 0.000 0.000 0.128 0.001 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/couchdbkit/client.py:946(iterator)

4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/couchdbkit/client.py:1024(_fetch_if_needed)

4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/couchdbkit/client.py:995(fetch)

9 0.000 0.000 0.124 0.014 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/http_parser/_socketio.py:56(readinto)

9 0.124 0.014 0.124 0.014 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/http_parser/_socketio.py:24(<lambda>)

4 0.000 0.000 0.114 0.029 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/couchdbkit/resource.py:40(json_body)

4 0.000 0.000 0.114 0.029 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/restkit/wrappers.py:270(body_string)

13 0.000 0.000 0.114 0.009 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/http_parser/reader.py:19(readinto)

103 0.000 0.000 0.112 0.001 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:70(<genexpr>)

13691 0.018 0.000 0.094 0.000 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/jsonobject/base.py:660(__setitem__)

103 0.002 0.000 0.091 0.001 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/util.py:65(location_custom_properties)

194 0.000 0.000 0.078 0.000 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:136(parent)

190 0.000 0.000 0.076 0.000 /home/czue/src/commcare-hq/corehq/apps/
→˓cachehq/mixins.py:35(get)

103 0.000 0.000 0.075 0.001 submodules/dimagi-utils-src/dimagi/utils/
→˓couch/database.py:50(iter_docs)

4 0.000 0.000 0.075 0.019 submodules/dimagi-utils-src/dimagi/utils/
→˓couch/bulk.py:81(get_docs)

(continues on next page)

52.1. Practical guide to profiling a slow view or function 319

CommCareHQ Documentation, Release 1.0

(continued from previous page)

4 0.000 0.000 0.073 0.018 /home/czue/.virtualenvs/commcare-hq/local/
→˓lib/python2.7/site-packages/requests/api.py:80(post)

Yikes! It looks like this is already quite fast with a hot cache! And there don’t appear to be any obvious candidates for
further optimization. If it is still a problem it may be an indication that we need to prime the cache better, or increase
the amount of data we are testing with locally to see more interesting results.

52.1.7 Aggregating data from multiple runs

In some cases it is useful to run a function a number of times and aggregate the profile data. To do this follow the
steps above to create a set of ‘.prof’ files (one for each run of the function) then use the gather_profile_stats.py script
to aggregate the data.

This will produce a file which can be analysed with the convert_profile.py script.

52.1.8 Additional references

• http://django-extensions.readthedocs.org/en/latest/runprofileserver.html

52.2 Memory profiling

Refer to these resources which provide good information on memory profiling:

• Diagnosing memory leaks

• Using heapy

• Diving into python memory

• Memory usage graphs with ps
– while true; do ps -C python -o etimes=,pid=,%mem=,vsz= >> mem.txt; sleep 1; done

• You can also use the “resident_set_size” decorator and context manager to print the amount of memory allocated
to python before and after the method you think is causing memory leaks:

from dimagi.utils.decorators.profile import resident_set_size

@resident_set_size()
def function_that_uses_a_lot_of_memory:

[u'{}'.format(x) for x in range(1,100000)]

def somewhere_else():
with resident_set_size(enter_debugger=True):

the enter_debugger param will enter a pdb session after your method has run so␣
→˓you can do more exploration

do memory intensive things

320 Chapter 52. Profiling

https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/gather_profile_stats.py
https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/convert_profile.py
http://django-extensions.readthedocs.org/en/latest/runprofileserver.html
http://chase-seibert.github.io/blog/2013/08/03/diagnosing-memory-leaks-python.html
http://smira.ru/wp-content/uploads/2011/08/heapy.html
https://github.com/CyrilPeponnet/cyrilpeponnet.github.com/blob/master/_posts/2014-09-18-diving-into-python-memory.md
http://brunogirin.blogspot.com.au/2010/09/memory-usage-graphs-with-ps-and-gnuplot.html

CHAPTER

FIFTYTHREE

CACHING AND MEMOIZATION

There are two primary ways of caching in CommCare HQ - using the decorators @quickcache and @memoized. At
their core, these both do the same sort of thing - they store the results of function, like this simplified version:

cache = {}

def get_object(obj_id):
if obj_id not in cache:

obj = expensive_query_for_obj(obj_id)
cache[obj_id] = obj

return cache[obj_id]

In either case, it is important to remember that the body of the function being cached is not evaluated at all when
the cache is hit. This results in two primary concerns - what to cache and how to identify it. You should cache only
functions which are referentially transparent, that is, “pure” functions which return the same result when called multiple
times with the same set of parameters.

This document describes the use of these two utilities.

53.1 Memoized

Memoized is an in-memory cache. At its simplest, it’s a replacement for the two common patterns used in this example
class:

class MyClass(object):

def __init__(self):
self._all_objects = None
self._objects_by_key = {}

@property
def all_objects(self):

if self._all_objects is None:
result = do_a_bunch_of_stuff()
self._all_objects = result

return self._all_objects

def get_object_by_key(self, key):
if key not in self._objects_by_key:

result = do_a_bunch_of_stuff(key)
(continues on next page)

321

CommCareHQ Documentation, Release 1.0

(continued from previous page)

self._objects_by_key[key] = result
return self._objects_by_key[key]

With the memoized decorator, this becomes:

from memoized import memoized

class MyClass(object):

@property
@memoized
def all_objects(self):

return do_a_bunch_of_stuff()

@memoized
def get_object_by_key(self, key):

return do_a_bunch_of_stuff(key)

When decorating a class method, @memoized stores the results of calls to those methods on the class instance. It stores
a result for every unique set of arguments passed to the decorated function. This persists as long as the class does (or
until you manually invalidate), and will be garbage collected along with the instance.

You can decorate any callable with @memoized and the cache will persist for the life of the callable. That is, if it
isn’t an instance method, the cache will probably be stored in memory for the life of the process. This should be used
sparingly, as it can lead to memory leaks. However, this can be useful for lazily initializing singleton objects. Rather
than computing at module load time:

def get_classes_by_doc_type():
Look up all subclasses of Document
return result

classes_by_doc_type = get_classes_by_doc_type()

You can memoize it, and only compute if and when it’s needed. Subsequent calls will hit the cache.

@memoized
def get_classes_by_doc_type():

Look up all subclasses of Document
return result

53.2 Quickcache

@quickcache behaves much more like a normal cache. It stores results in a caching backend (Redis, in CCHQ) for
a specified timeout (5 minutes, by default). This also means they can be shared across worker machines. Quickcache
also caches objects in local memory (10 seconds, by default). This is faster to access than Redis, but its not shared
across machines.

Quickcache requires you to specify which arguments to “vary on”, that is, which arguments uniquely identify a cache

For examples of how it’s used, check out the repo. For background, check out Why we made quickcache

322 Chapter 53. Caching and Memoization

https://github.com/dimagi/quickcache
https://www.dimagi.com/blog/why-we-made-quickcache/

CommCareHQ Documentation, Release 1.0

53.3 The Differences

Memoized returns the same actual python object that was originally returned by the function. That is, id(obj1)
== id(obj2) and obj1 is obj2. Quickcache, on the other hand, saves a copy (however, if you’re within the
memoized_timeout, you’ll get the original object, but don’t write code which depends on it.).

Memoized is a python-only library with no other dependencies; quickcache is configured on a per-project basis to use
whatever cache backend is being used, in our case django-cache backends.

Incidentally, quickcache also uses some inspection magic that makes it not work in a REPL context (i.e. from running
python interactively or ./manage.py shell)

53.4 Lifecycle

Memoized on instance method:
The cache lives on the instance itself, so it gets garbage collected along with the instance

Memoized on any other function/callable:
The cache lives on the callable, so if it’s globally scoped and never gets garbage collected, neither does the cache

Quickcache:
Garbage collection happens based on the timeouts specified: memoize_timeout for the local cache and timeout
for redis

53.5 Scope

In-memory caching (memoized or quickcache) is scoped to a single process on a single machine. Different machines
or different processes on the same machine do not share these caches between them.

For this reason, memoized is usually used when you want to cache things only for duration of a request, or for globally
scoped objects that need to be always available for very fast retrieval from memory.

Redis caching (quickcache only) is globally shared between processes on all machines in an environment. This is used
to share a cache across multiple requests and webworkers (although quickcache also provides a short-duration, lightning
quick, in-memory cache like @memoized, so you should never need to use both).

53.6 Decorating various things

Memoized is more flexible here - it can be used to decorate any callable, including a class. In practice, it’s much more
common and practical to limit ourselves to normal functions, class methods, and instance methods. Technically, if you
do use it on a class, it has the effect of caching the result of calling the class to create an instance, so instead of creating
a new instance, if you call the class twice with the same arguments, you’ll get the same (obj1 is obj2) python object
back.

Quickcache must go on a function—whether standalone or within a class—and does not work on other callables like a
class or other custom callable. In practice this is not much of a limitation.

53.3. The Differences 323

CommCareHQ Documentation, Release 1.0

53.7 Identifying cached values

Cached functions usually have a set of parameters passed in, and will return different results for different sets of pa-
rameters.

Best practice here is to use as small a set of parameters as possible, and to use simple objects as parameters when
possible (strings, booleans, integers, that sort of thing).

@quickcache(['domain_obj.name', 'user._id'], timeout=10)
def count_users_forms_by_device(domain_obj, user):

return {
XFormInstance.objects.count_forms_by_device(domain_obj.name, device.device_id)
for device in user.devices

}

The first argument to @quickcache is an argument called vary_on which is a list of the parameters used to identify
each result stored in the cache. Taken together, the variables specified in vary_on should constitute all inputs that would
change the value of the output. You may be thinking “Well, isn’t that just all of the arguments?” Often, yes. However,
also very frequently, a function depends not on the exact object being passed in, but merely on one or a few properties
of that object. In the example above, we want the function to return the same result when called with the same domain
name and user ID, not necessarily the same exact objects. Quickcache handles this by allowing you to pass in strings
like parameter.attribute. Additionally, instead of a list of parameters, you may pass in a function, which will be
called with the arguments of the cached function to return a cache key.

Memoized does not provide these capabilities, and instead always uses all of the arguments passed in. For this reason,
you should only memoize functions with simple arguments. At a minimum, all arguments to memoized must be
hashable. You’ll notice that the above function doesn’t actually use anything on the domain_obj other than name, so
you could just refactor it to accept domain instead (this also means code calling this function won’t need to fetch the
domain object to pass to this function, only to discard everything except the name anyways).

You don’t need to let this consideration muck up your function’s interface. A common practice is to make a helper
function with simple arguments, and decorate that. You can then still use the top-level function as you see fit. For
example, let’s pretend the above function is an instance method and you want to use memoize rather than quickcache.
You could split it apart like this:

@memoized
def _count_users_forms_by_device(self, domain, device_id):

return XFormInstance.objects.count_forms_by_device(domain, device_id)

def count_users_forms_by_device(self, domain_obj, user):
return {

self._count_users_forms_by_device(domain_obj.name, device.device_id)
for device in user.devices

}

324 Chapter 53. Caching and Memoization

CommCareHQ Documentation, Release 1.0

53.8 What can be cached

Memoized:
All arguments must be hashable; notably, lists and dicts are not hashable, but tuples are.

Return values can be anything.

Quickcache:
All vary_on values must be “basic” types (all the way down, if they are collections): string types, bool,
number, list/tuple (treated as interchangeable), dict, set, None. Arbitrary objects are not allowed, nor are
lists/tuples/dicts/sets containing objects, etc.

Return values can be anything that’s pickleable. More generally, quickcache dictates what values you can
vary_on, but leaves what values you can return up to your caching backend; since we use django cache, which
uses pickle, our return values have to be pickleable.

53.9 Invalidation

“There are only two hard problems in computer science - cache invalidation and naming things” (and
off-by-one errors)

Memoized doesn’t allow invalidation except by blowing away the whole cache for all parameters. Use <function>.
reset_cache()

If you are trying to clear the cache of a memoized @property, you will need to invalidate the cache manually with
self._<function_name>_cache.clear()

One of quickcache’s killer features is the ability to invalidate the cache for a specific function call. To invalidate the cache
for <function>(*args, **kwargs), use <function>.clear(*args, **kwargs). Appropriately selecting your
args makes this easier.

To sneakily prime the cache of a particular call with a preset value, you can use <function>.
set_cached_value(*args, **kwargs).to(value). This is useful when you are already holding the answer to an
expensive computation in your hands and want to do the next caller the favor of not making them do it. It’s also useful
for when you’re dealing with a backend that has delayed refresh as is the case with Elasticsearch (when configured a
certain way).

53.10 Other ways of caching

Redis is sometimes accessed manually or through other wrappers for special purposes like locking. Some of those are:

RedisLockableMixIn
Provides get_locked_obj, useful for making sure only one instance of an object is accessible at a time.

CriticalSection
Similar to the above, but used in a with construct - makes sure a block of code is never run in parallel with the
same identifier.

QuickCachedDocumentMixin
Intended for couch models - quickcaches the get method and provides automatic invalidation on save or delete.

CachedCouchDocumentMixin
Subclass of QuickCachedDocumentMixin which also caches some couch views

53.8. What can be cached 325

CommCareHQ Documentation, Release 1.0

326 Chapter 53. Caching and Memoization

CHAPTER

FIFTYFOUR

PLUGINS

There are a number of plugins which sit on top of the core CommCare functionality that enable a specific set of
functionality. For safety these plugins aren’t available to end-users when the platform is hosted for external signups in
a multi-tenant configuration, rather these plugins are enabled by system administrators.

When hosting the CommCare HQ, be aware that plugins aren’t fully supported by the core committers and generally
have a higher support burden. They may require directly reading the code to provide support or understand in full. A
smaller percentage of CommCare’s open source developer community typically has knowledge on any given plugin. If
you are enabling plugins in your local environment, please make sure you have sufficient engineering expertise to be
able to read direct code-level documentation. Plugins can be managed through the admin UI, available at https://
<hq.server.url>/hq/flags/.

The CommCare Community of Practice urges all plugin maintainers to follow our best practices for documentation.
Each commit should include a description of the functionality and links to relevant tickets.

Plugins allow limiting access to a set of functionality.

They are implemented as a couchdb-backed django app, designed to be simple and fast (automatically cached).

Most plugins are configured by manually adding individual users or domains in the plugins admin UI.
These are defined by adding a new StaticToggle in this file. See PredictablyRandomToggle and
DynamicallyPredictablyRandomToggle if you need a plugin to be defined for a random subset of users.

Namespaces define the type of access granted. NAMESPACE_DOMAIN allows the plugin to be enabled for individual
project spaces. NAMESPACE_USER allows the plugin to be enabled for individual users, with the functionality visible
to only that user but on any project space they visit.

NAMESPACE_DOMAIN is preferred for most flags, because it can be confusing for different users to experience
different behavior. Domain-based flags are like a lightweight privilege that’s independent of a software plan. User-
based flags are more like a lightweight permission that’s independent of user roles (and therefore also independent of
domain).

Tags document the feature’s expected audience, particularly services projects versus SaaS projects.

See descriptions below. Tags have no technical effect. When in doubt, use TAG_CUSTOM to limit your plugin’s
support burden.

When adding a new plugin, define it near related plugins - this file is frequently edited, so appending it to the end of
the file invites merge conflicts.

To access your plugin:

• In python, StaticToggle has enabled_for_request, which takes care of detecting which namespace(s) to check,
and enabled, which requires the caller to specify the namespace.

• For python views, the required_decorator is useful.

• For python tests, the flag_enabled decorator is useful.

327

(https://commcare-hq.readthedocs.io/documenting.html

CommCareHQ Documentation, Release 1.0

• In HTML, there’s a toggle_enabled template tag.

• In JavaScript, the hqwebapp/js/toggles modules provides as toggleEnabled method.

(Note: Plugins were historically called Feature Flags and Toggles)

328 Chapter 54. Plugins

CHAPTER

FIFTYFIVE

COMMTRACK

55.1 What happens during a CommTrack submission?

This is the life-cycle of an incoming stock report via sms.

1. SMS is received and relevant info therein is parsed out

2. The parsed sms is converted to an HQ-compatible xform submission. This includes:

• stock info (i.e., just the data provided in the sms)

• location to which this message applies (provided in message or associated with sending user)

• standard HQ submission meta-data (submit time, user, etc.)

Notably missing: anything that updates cases

3. The submission is not submitted yet, but rather processed further on the server. This includes:

• looking up the product sub-cases that actually store stock/consumption values. (step (2) looked up
the location ID; each supply point is a case associated with that location, and actual stock data is
stored in a sub-case – one for each product – of the supply point case)

• applying the stock actions for each product in the correct order (a stock report can include multiple
actions; these must be applied in a consistent order or else unpredictable stock levels may result)

• computing updated stock levels and consumption (using somewhat complex business and reconcili-
ation logic)

• dumping the result in case blocks (added to the submission) that will update the new values in HQ’s
database

• post-processing also makes some changes elsewhere in the instance, namely:
– also added are ‘inferred’ transactions (if my stock was 20, is now 10, and i had receipts of

15, my inferred consumption was 25). This is needed to compute consumption rate later.
Conversely, if a deployment tracks consumption instead of receipts, receipts are inferred this
way.

– transactions are annotated with the order in which they were processed

Note that normally CommCare generates its own case blocks in the forms it submits.

4. The updated submission is submitted to HQ like a normal form

329

CommCareHQ Documentation, Release 1.0

55.2 Submitting a stock report via CommCare

CommTrack-enabled CommCare submits xforms, but those xforms do not go through the post-processing step in (3)
above. Therefore these forms must generate their own case blocks and mimic the end result that commtrack expects.
This is severely lacking as we have not replicated the full logic from the server in these xforms (unsure if that’s even
possible, nor do we like the prospect of maintaining the same logic in two places), nor can these forms generate the
inferred transactions. As such, the capabilities of the mobile app are greatly restricted and cannot support features like
computing consumption.

This must be fixed and it’s really not worth even discussing much else about using a mobile app until it is.

330 Chapter 55. CommTrack

CHAPTER

FIFTYSIX

ELASTICSEARCH

56.1 Overview

56.1.1 Indexes

We have indexes for each of the following doc types:
• Applications - hqapps

• Cases - hqcases

• Domains - hqdomains

• Forms - xforms

• Groups - hqgroups

• Users - hqusers

• SMS logs - smslogs

• Case Search - case_search

Each index has a corresponding mapping file in corehq/pillows/mappings/. Each mapping has a hash that reflects
the current state of the mapping. This can just be a random alphanumeric string. The hash is appended to the index
name so the index is called something like xforms_1cce1f049a1b4d864c9c25dc42648a45. Each type of index has
an alias with the short name, so you should normally be querying just xforms, not the fully specified index+hash. All
of HQ code except the index maintenance code uses aliases to read and write data to indices.

Whenever the mapping is changed, this hash should be updated. That will trigger the creation of a new index on
deploy (by the $./manage.py ptop_preindex command). Once the new index is finished, the alias is flipped ($.
/manage.py ptop_es_manage --flip_all_aliases) to point to the new index, allowing for a relatively seamless
transition.

56.1.2 Keeping indexes up-to-date

Pillowtop looks at the changes feed from couch and listens for any relevant new/changed docs. In order to have your
changes appear in elasticsearch, pillowtop must be running:

$./manage.py run_ptop --all

You can also run a once-off reindex for a specific index:

$./manage.py ptop_reindexer_v2 user

331

CommCareHQ Documentation, Release 1.0

56.1.3 Changing a mapping or adding data

If you’re adding additional data to elasticsearch, you’ll need modify that index’s mapping file in order to be able to
query on that new data.

Adding data to an index

Each pillow has a function or class that takes in the raw document dictionary and transforms it into the document that
get’s sent to ES. If for example, you wanted to store username in addition to user_id on cases in elastic, you’d add
username to corehq.pillows.mappings.case_mapping, then modify transform_case_for_elasticsearch
function to do the appropriate lookup. It accepts a doc_dict for the case doc and is expected to return a doc_dict,
so just add the username to that.

Building the new index

Once you’ve made the change, you’ll need to build a new index which uses that new mapping. Updating index name in
the mapping file triggers HQ to create the new index with new mapping and reindex all data, so you’ll have to update
the index hash and alias at the top of the mapping file. The hash suffix to the index can just be a random alphanumeric
string and is usually the date of the edit by convention. The alias should also be updated to a new one of format
xforms_<date-modified> (the date is just by convention), so that production operations continue to use the old alias
pointing to existing index. This will trigger a preindex as outlined in the Indexes section. In subsequent commits alias
can be flipped back to what it was, for example xforms. Changing the alias name doesn’t trigger a reindex.

Updating indexes in a production environment

Updates in a production environment should be done in two steps, so to not show incomplete data.

1. Setup a release of your branch using cchq <env> setup_limited_release:keep_days=n_days

2. In your release directory, kick off a index using ./mange.py ptop_preindex

3. Verify that the reindex has completed successfully - This is a weak point in our current migration process - This
can be done by using ES head or the ES APIs to compare document counts to the previous index. - You should
also actively look for errors in the ptop_preindex command that was ran

4. Merge your PR and deploy your latest master branch.

56.1.4 How to un-bork your broken indexes

Sometimes things get in a weird state and (locally!) it’s easiest to just blow away the index and start over.

1. Delete the affected index. The easiest way to do this is with elasticsearch-head. You can delete multiple af-
fected indices with curl -X DELETE http://localhost:9200/*. * can be replaced with any regex to delete
matched indices, similar to bash regex.

2. Run $./manage.py ptop_preindex && ./manage.py ptop_es_manage --flip_all_aliases.

3. Try again

332 Chapter 56. Elasticsearch

https://github.com/mobz/elasticsearch-head

CommCareHQ Documentation, Release 1.0

56.1.5 Querying Elasticsearch - Best Practices

Here are the most basic things to know if you want to write readable and reasonably performant code for accessing
Elasticsearch.

Use ESQuery when possible

Check out /es_query

• Prefer the cleaner .count(), .values(), .values_list(), etc. execution methods to the more low level .
run().hits, .run().total, etc. With the latter easier to make mistakes and fall into anti-patterns and it’s
harder to read.

• Prefer adding filter methods to using set_query() unless you really know what you’re doing and are willing to
make your code more error prone and difficult to read.

Prefer “get” to “search”

Don’t use search to fetch a doc or doc fields by doc id; use “get” instead. Searching by id can be easily an order of
magnitude (10x) slower. If done in a loop, this can effectively grind the ES cluster to a halt.

Bad::

POST /hqcases_2016-03-04/case/_search
{
"query": {
"filtered": {
"filter": {
"and": [{"terms": {"_id": [case_id]}}, {"match_all": {}}]

},
"query": {"match_all":{}}

}
},
"_source": ["name"],
"size":1000000

}

Good::

GET /hqcases_2016-03-04/case/<case_id>?_source_include=name

Prefer scroll queries

Use a scroll query when fetching lots of records.

56.1. Overview 333

CommCareHQ Documentation, Release 1.0

Prefer filter to query

Don’t use query when you could use filter if you don’t need rank.

Use size(0) with aggregations

Use size(0) when you’re only doing aggregations thing—otherwise you’ll get back doc bodies as well! Sometimes
that’s just abstractly wasteful, but often it can be a serious performance hit for the operation as well as the cluster.

The best way to do this is by using helpers like ESQuery’s .count() that know to do this for you—your code will look
better and you won’t have to remember to check for that every time. (If you ever find helpers not doing this correctly,
then it’s definitely worth fixing.)

56.2 Elasticsearch App

56.2.1 Elasticsearch Index Management

CommCare HQ data in Elasticsearch is integral to core application functionality. The level that the application relies
on Elasticsearch data varies from index to index. Currently, Elasticsearch contains both authoritative data (for example
@indexed_on case property and UnknownUser user records) and data used for real-time application logic (the users
index, for example).

In order to guarantee stability (or “manageability”, if you will) of this core data, it is important that Elasticsearch indexes
are maintained in a consistent state across all environments as a concrete design feature of CommCare HQ. This design
constraint is accomplished by managing Elasticsearch index modifications (for example: creating indexes, updating
index mappings, etc) exclusively through Django’s migration framework. This ensures that all Elasticsearch index
modifications will be part of standard CommCare HQ code deployment procedures, thereby preventing Elasticsearch
index state drift between maintained CommCare HQ deployments.

One or more migrations are required any time the following Elasticsearch state configurations are changed in code:

• index names

• index aliases

• analyzers

• mappings

• tuning parameters

Elasticsearch allows changing an index’s number_of_replicas tuning parameter on a live index. In the future, the
configuration settings (i.e. “live state”) of that value should be removed from the CommCare HQ codebase entirely in
order to decouple it from application logic.

334 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

Creating Elasticsearch Index Migrations

Like Django Model migrations, Elasticsearch index migrations can be quite verbose. To aid in creating these migrations,
there is a Django manage command that can generate migration files for Elasticsearch index operations. Since the
Elasticsearch index state is not a Django model, Django’s model migration framework cannot automatically determine
what operations need to be included in a migration, or even when a new migration is required. This is why creating
these migrations is a separate command and not integrated into the default makemigrations command.

To create a new Elasticsearch index migration, use the make_elastic_migrationmanagement command and provide
details for the required migration operations via any combination of the -c/--create, -u/--update and/or -d/
--delete command line options.

Similar to Django model migrations, this management command uses the index metadata (mappings, analysis, etc)
from the existing Elasticsearch code, so it is important that this command is executed after making changes to index
metadata. To provide an example, consider a hypothetical scenario where the following index changes are needed:

• create a new users index

• update the mapping on the existing groups index to add a new property named pending_users

• delete the existing index named groups-sandbox

After the new property has been added to the groups index mapping in code, the following management command
would create a migration file (e.g. corehq/apps/es/migrations/0003_groups_pending_users.py) for the nec-
essary operations:

./manage.py make_elastic_migration --name groups_pending_users -c users -u␣
→˓groups:pending_users -d groups-sandbox

Updating Elastic Index Mappings

Prior to the UpdateIndexMapping migration operation implementation, Elastic mappings were always applied “in
full” any time a mapping change was needed. That is: the entire mapping (from code) was applied to the existing index
via the Put Mapping API. This technique had some pros and cons:

• Pro: the mapping update logic in code was simple because it did not have to worry about which existing mapping
properties are persistent (persist on the index even if omitted in a PUT request payload) and which ones are volatile
(effectively “unset” if omitted in a PUT request payload).

• Con: it requires that all mapping properties are explicitly set on every mapping update, making mapping updates
impossible if the existing index mapping in Elasticsearch has diverged from the mapping in code.

Because CommCare HQ Elastic mappings have been able to drift between environments, it is no longer possible to
update some index mappings using the historical technique. On some indexes, the live index mappings have sufficiently
diverged that there is no common, “full mapping definition” that can be applied on all environments. This means that in
order to push mapping changes to all environments, new mapping update logic is needed which is capable of updating
individual properties on an Elastic index mapping while leaving other (existing) properties unchanged.

The UpdateIndexMapping migration operation adds this capability. Due to the complex behavior of the Elasticsearch
“Put Mapping” API, this implementation is limited to only support changing the mapping _meta and properties
items. Changing other mapping properties (e.g. date_detection, dynamic, etc) is not yet implemented. However,
the current implementation does ensure that the existing values are retained (unchanged). Historically, these values are
rarely changed, so this limitation does not hinder any kind of routine maintenance operations. Implementing the ability
to change the other properties will be a simple task when there is a clear definition of how that functionality needs to
work, for example: when a future feature/change requires changing these properties for a specific reason.

56.2. Elasticsearch App 335

https://www.elastic.co/guide/en/elasticsearch/reference/2.4/indices-put-mapping.html

CommCareHQ Documentation, Release 1.0

Comparing Mappings In Code Against Live Indexes

When modifying mappings for an existing index, it can be useful to compare the new mapping (as defined in code) to
the live index mappings in Elasticsearch on a CommCare HQ deployment. This is possible by dumping the mappings
of interest into local files and comparing them with a diff utility. The print_elastic_mappings Django manage
command makes this process relatively easy. Minimally, this can be accomplished in as few as three steps:

1. Export the local code mapping into a new file.

2. Export the mappings from a deployed environment into a local file.

3. Compare the two files.

In practice, this might look like the following example:

./manage.py print_elastic_mappings sms --no-names > ./sms-in-code.py
cchq <env> django-manage print_elastic_mappings smslogs_2020-01-28:sms --no-names > ./
→˓sms-live.py
diff -u ./sms-live.py ./sms-in-code.py

Elastic Index Tuning Configurations

CommCare HQ provides a mechanism for individual deployments (environments) to tune the performance character-
istics of their Elasticsearch indexes via Django settings. This mechanism can be used by defining an ES_SETTINGS
dictionary in localsettings.py (or by configuring the requisite Elasticsearch parameters in a CommCare Cloud
environment). Tuning parameters can be specified in one of two ways:

1. “default”: configures the tuning settings for all indexes in the environment.

2. index identifier: configures the tuning settings for a specific index in the environment – these settings take
precedence over “default” settings.

For example, if an environment wishes to explicitly configure the “case_search” index with six shards, and all others
with only three, the configuration could be specified in localsettings.py as:

ES_SETTINGS = {
"default": {"number_of_shards": 3},
"case_search": {"number_of_shards": 6},

}

Configuring a tuning setting with the special value None will result in that configuration item being reset
to the Elasticsearch cluster default (unless superseded by another setting with higher precedence). Refer to
corehq/app/es/index/settings.py file for the full details regarding what items (index and tunning settings values) are
configurable, as well as what default tuning settings will be used when not customized by the environment.

Important note: These Elasticsearch index tuning settings are not “live”. That is: changing their values on a deployed
environment will not have any immediate affect on live indexes in Elasticsearch. Instead, these values are only ever
used when an index is created (for example, during a fresh CommCare HQ installation or when an existing index is
reindexed into a new one). This means that making new values become “live” involves an index migration and reindex,
which requires changes in the CommCare HQ codebase.

336 Chapter 56. Elasticsearch

https://commcare-cloud.readthedocs.io/en/latest/reference/1-commcare-cloud/2-configuration.html
https://commcare-cloud.readthedocs.io/en/latest/reference/1-commcare-cloud/2-configuration.html
https://github.com/dimagi/commcare-hq/blob/master/corehq/app/es/index/settings.py

CommCareHQ Documentation, Release 1.0

56.2.2 Adapter Design

The HQ Elastic adapter design came about due to the need for reindexing Elasticsearch indexes in a way that is trans-
parent to parts of HQ that write to Elasticsearch (e.g. pillowtop). Reindexing is necessary for making changes to
index mappings, is a prerequisite to upgrading an Elasticsearch cluster, and is also needed for changing low-level index
configurations (e.g. sharding).

There is an existing procedure draft that documents the steps that were used on one occasion to reindex the
case_search index. This procedure leveraged a custom pillow to “backfill” the cloned index (i.e. initially popu-
lated using Elasticsearch Reindex API). That procedure only works for a subset of HQ Elasticsearch indexes, and is
too risky to be considered as an ongoing Elastic maintenance strategy. There are several key constraints that an HQ
reindexing procedure should meet which the existing procedure does not:

• simple and robust

• performed with standard maintenance practices

• provides the ability to test and verify the integrity of a new index before it is too late to be rejected

• allows HQ Elasticsearch index state to remain decoupled from the commcare-cloud codebase

• is not disruptive – does not prohibit any other kind of standard maintenance that might come up while the oper-
ation is underway

• is “fire and forget” – does not require active polling of intermediate state in order to progress the overall operation

• is practical for third party HQ hosters to use

One way to accomplish these constraints is to implement an “index multiplexing” feature in HQ, where Elasticsearch
write operations are duplicated across two indexes. This design facilitates maintaining two up-to-date versions of any
index (a primary read/write index and a secondary write-only index), allowing HQ to run in a “normal” state (i.e. not
a custom “maintenance” state) while providing the ability to switch back and forth (swapping primary and secondary)
before fully committing to abandoning one of them. Creating a copy of an index is the unavoidable nature of a reindex
operation, and multiplexing allows safe switching from one to the other without causing disruptions or outages while
keeping both up-to-date.

The least disruptive way to accomplish a multiplexing design is with an adapter layer that operates between the low-
level third party Elasticsearch Python client library and high-level HQ components which need to read/write data in an
Elasticsearch index. HQ already has the initial framework for this layer (the ElasticsearchInterface class), so the
adapter layer is not a new concept. The reason that the ElasticsearchInterface implementation cannot be modified
in-place to accommodate multiplexing is because it is the wrong level of abstraction. The ElasticsearchInterface
abstraction layer was designed as an Elasticsearch version abstraction. It provides a common set of functions and
methods so that the high-level HQ “consumer” that uses it can interact with Elasticsearch documents without knowing
which Elasticsearch version is on the backend. It is below “index-level” logic, and does not implement index-specific
functionality needed in order for some indexes to be handled differently than others (e.g. some indexes are indexed
individually while others are multiplexed). The document adapter implementation is a document abstraction layer. It
provides a common set of functions and methods to allow high-level HQ code to perform Elasticsearch operations at
the document level, allowing unique adapters to handle their document operations differently from index to index.

With a multiplexing adapter layer, reindexing an Elasticsearch index can be as few as four concise steps, none of which
are time-critical in respect to each other:

1. Merge and deploy a PR that configures multiplexing on an index.

2. Execute an idempotent management command that updates the secondary index from its primary counterpart.

3. Merge and deploy a PR that disables multiplexing for the index, (now using only the new index).

4. Execute a management command to delete the old index.

Note: the above steps are not limited to a single index at a time. That is, the implementation does not prohibit config-
uring multiplexing and reindexing multiple indexes at once.

56.2. Elasticsearch App 337

CommCareHQ Documentation, Release 1.0

This reindex procedure is inherently safe because:

• At any point in the process, the rollback procedure is a simple code change (i.e. revert PR, deploy).

• The operation responsible for populating the secondary index is idempotent and decoupled from the index con-
figuration, allowing it to undergo change iterations without aborting the entire process (thereby losing reindex
progress).

• Instructions for third party hosters can follow the same process that Dimagi uses, which guarantees that any
possible problems encountered by a third party hoster are not outside the Dimagi main track.

Design Details

Reindex Procedure Details

1. Configure multiplexing on an index by passing in secondary index name to create_document_adapter.

• Ensure that there is a migration in place for creating the index (see Creating Elasticsearch Index Migrations
above).

• (Optional) If the reindex involves other meta-index changes (shards, mappings, etc), also update those
configurations at this time.

Note Currently the Adapter will not support reindexing on specific environments but it would be compatible
to accommodate it in future. This support will be added once we get to V5 of ES.

• Configure create_document_adapter to return an instance of ElasticMultiplexAdapter by passing
in secondary index name.

case_adapter = create_document_adapter(
ElasticCase,
"hqcases_2016-03-04",
"case",
secondary="hqcase_2022-10-20"

)

• Add a migration which performs all cluster-level operations required for the new (secondary) index. For
example:

– creates the new index

– configures shards, replicas, etc for the index

– sets the index mapping

• Review, merge and deploy this change. At Django startup, the new (secondary) index will automatically
and immediately begin receiving document writes. Document reads will always come from the primary
index.

2. Execute a management command to sync and verify the secondary index from the primary.

Note: This command is not yet implemented.

This management command is idempotent and performs four operations in serial. If any of the operations com-
plete with unexpected results, the command will abort with an error.

1. Executes a Elastic reindex request with parameters to populate the secondary index from the primary,
configured to not overwrite existing documents in the target (secondary) index.

2. Polls the reindex task progress, blocking until complete.

338 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

Note: the reindex API also supports a “blocking” mode which may be advantageous due to limitations in
Elasticsearch 2.4’s Task API. As such, this step 2. might be removed in favor of a blocking reindex during
the 2.4 –> 5.x upgrade.

3. Performs a cleanup operation on the secondary index to remove tombstone documents.

4. Performs a verification pass to check integrity of the secondary index.

Note: An exact verification algorithm has not been designed, and complex verification operations may be
left out of the first implementation. The reason it is outlined in this design is to identify that verification is
supported and would happen at this point in the process. The initial implementation will at least implement
feature-equivalency with the previous process (i.e. ensure document counts are equal between the two
indexes), and tentatively an “equivalency check” of document _id’s (tentative because checking equality
while the multiplexer is running is a race condition).

Example command (not yet implemented):

./manage.py elastic_sync_multiplexed ElasticBook

3. Perform a primary/secondary “swap” operation one or more times as desired to run a “live test” on the new
(secondary) index while keeping the old (primary) index up-to-date.

• Reconfigure the adapter by swapping the “primary” and “secondary” index names.

• Add a migration that cleans up tombstone documents on the “new primary” index prior to startup.

Note: In theory, this step can be optional (e.g. if the sync procedure becomes sufficiently trusted in the future,
or for “goldilox” indexes where rebuilding from source is feasible but advantageous to avoid, etc).

4. Disable multiplexing for the index.

• Reconfigure the document adapter for the index by changing the “primary index name” to the value of
the “secondary index name” and remove the secondary configuration (thus reverting the adapter back to a
single-index adapter).

• Add a migration that cleans up tombstone documents on the index.

• Review, merge and deploy this change.

5. Execute a management command to delete the old index. Example:

./manage.py prune_elastic_index ElasticBook

56.2.3 Elastic Client Adapters

The corehq.apps.es.clientmodule encapsulates the CommCare HQ Elasticsearch client adapters. It implements a
high-level Elasticsearch client protocol necessary to accomplish all interactions with the backend Elasticsearch cluster.
Client adapters are split into two usage patterns, the “Management Adapter” and “Document Adapters”. Client adapters
are instantiated at import time in order to perform index verification when Django starts. Downstream code needing
an adapter import and use the adapter instance.

56.2. Elasticsearch App 339

CommCareHQ Documentation, Release 1.0

Management Adapter

There is only one management adapter, corehq.apps.es.client.manager. This adapter is used for performing all
cluster management tasks such as creating and updating indices and their mappings, changing index settings, changing
cluster settings, etc. This functionality is split into a separate class for a few reasons:

1. The management adapter is responsible for low-level Elastic operations which document adapters should never
be performing because the scope of a document adapter does not extend beyond a single index.

2. Elasticsearch 5+ implements security features which limit the kinds of operations a connection can be used for.
The separation in these client adapter classes is designed to fit into that model.

from corehq.apps.es.client import manager

manager.index_create("books")
mapping = {"properties": {

"author": {"type": "text"},
"title": {"type": "text"},
"published": {"type": "date"},

}}
manager.index_put_mapping("books", "book", mapping)
manager.index_refresh("books")
manager.index_delete("books")

Document Adapters

Document adapter classes are defined on a per-index basis and include specific properties and functionality necessary
for maintaining a single type of “model” document in a single index. Each index in Elasticsearch needs to have a
cooresponding ElasticDocumentAdapter subclass which defines how the Python model is applied to that specific
index. At the very least, a document adapter subclass must define the following:

• A mapping which defines the structure and properties for documents managed by the adapter.

• A from_python() classmethod which can convert a Python model object into the JSON-serializable format for
writing into the adapter’s index.

The combination of (index_name, type) constrains the document adapter to a specific HQ document mapping.
Comparing an Elastic cluster to a Postgres database (for the sake of analogy), the Elastic index is analogous to a Postgres
schema object (e.g. public), and the _type property is analogous to a Postgres table object. The combination of
both index name and _type fully constrains the properties that make up a specific Elastic document.

Document adapters are instantiated once at runtime, via the create_document_adapter() function. The purpose of
this function is to act as a shim, returning an ElasticDocumentAdapter instance or an ElasticMultiplexAdapter
instance (see Multiplexing Document Adapters below); depending on whether or not a secondary index is defined by
the secondary keyword argument.

A simple example of a document model and its corresponding adapter:

class Book:

def __init__(self, isbn, author, title, published):
self.isbn = isbn
self.author = author
self.title = title
self.published = published

(continues on next page)

340 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

(continued from previous page)

class ElasticBook(ElasticDocumentAdapter):

mapping = {"properties": {
"author": {"type": "text"},
"title": {"type": "text"},
"published": {"type": "date"},

}}

@classmethod
def from_python(cls, book):

source = {
"author": book.author,
"title": book.title,
"published": book.published,

}
return book.isbn, source

books_adapter = create_document_adapter(
ElasticBook,
index_name="books",
type_="book",

)

Using this adapter in practice might look as follows:

index new
new_book = Book(

"978-1491946008",
"Luciano Ramalho",
"Fluent Python: Clear, Concise, and Effective Programming",
datetime.date(2015, 2, 10),

)
books_adapter.index(new_book)
fetch existing
classic_book = books_adapter.get("978-0345391803")

Multiplexing Document Adapters

The ElasticMultiplexAdapter is a wrapper around two ElasticDocumentAdapter instances: a primary and a
secondary. The multiplexing adapter provides the same public methods as a standard document adapter, but it per-
forms Elasticsearch write operations against both indexes in order to keep them in step with document changes. The
multiplexing adapter provides the following functionality:

• All read operations (exists(), get(), search(), etc) are always performed against the primary adapter only.
Read requests are never performed against the secondary adapter.

• The update() write method always results in two sequential requests against the underlying indexes:

1. An update request against the primary adapter that simultaneously fetches the full, post-update document
body.

56.2. Elasticsearch App 341

CommCareHQ Documentation, Release 1.0

2. An upsert update request against the secondary adapter with the document returned in the primary update
response.

• All other write operations (index(), delete(), bulk(), etc) leverage the Elasticsearch Bulk API to perform
the required operations against both indexes simultaneously in as few requests against the backend as possible (a
single request in some cases).

– The index() method always achieves the index into both indexes with a single request.

– The delete() method attempts to perform the delete against both indexes in a single request, and will only
perform a second request in order to index a tombstone on the secondary (if the primary delete succeeded
and the secondary delete failed with a 404 status).

– The bulk() method (the underlying method for all bulk operations) performs actions against both indexes
simultaneously by chunking the actions prior to calling elasticsearch.helpers.bulk() (as opposed
to relying on that function to perform the chunking). This allows all bulk actions to be applied against both
the primary and secondary indexes in parallel, thereby keeping both indexes synchronized throughout the
duration of potentially large (multi-request) bulk operations.

56.2.4 Tombstone

The concept of Tombstone in the ES mulitplexer is there to be placeholder for the docs that get deleted on the primary
index prior to that document being indexed on the secondary index. It means that whenever an adapter is multiplexed
and a document is deleted, then the secondary index will receive a tombstone entry for that document if and only if
the primary index delete succeeds and the secondary index delete fails due to a not found condition (404). The python
class defined to represent these tombstones is corehq.apps.es.client.Tombstone.

Scenario without tombstones: If a multiplexing adapter deletes a document in the secondary index (which turns out
to be a no-op because the document does not exist there yet), and then that same document is copied to the secondary
index by the reindexer, then it will exist indefinitely in the secondary even though it has been deleted in the primary.

Put another way:

• Reindexer: gets batch of objects from primary index to copy to secondary.

• Multiplexer: deletes a document in that batch (in both primary and secondary indexes).

• Reindexer: writes deleted (now stale) document into secondary index.

• Result: secondary index contains a document that has been deleted.

With tombstones: this will not happen because the reindexer uses a “ignore existing documents” copy mode, so it will
never overwrite a tombstone with a stale (deleted) document.

Tombstones will only exist in the secondary index and will be deleted as a final step following a successful sync (reindex)
operation. Since tombstones can only be created while the primary and secondary indexes are out of sync (secondary
index does not yet contain all primary documents), then once the sync is complete, the multiplexer will no longer create
new tombstones.

A sample tombstone document would look like

{
"__is_tombstone__" : True

}

342 Chapter 56. Elasticsearch

https://www.elastic.co/guide/en/elasticsearch/reference/2.4/docs-bulk.html

CommCareHQ Documentation, Release 1.0

56.2.5 Code Documentation

HQ Elasticsearch client logic (adapters).

class corehq.apps.es.client.BaseAdapter

Base adapter that includes methods common to all adapters.

__init__()

info()

Return the Elasticsearch server info.

ping()

Ping the Elasticsearch service.

class corehq.apps.es.client.BulkActionItem(op_type, doc=None, doc_id=None)
A wrapper for documents to be processed via Elasticsearch’s Bulk API. Collections of these objects can be passed
to an ElasticDocumentAdapter’s .bulk() method for processing.

Instances of this class are meant to be acquired via one of the factory methods rather than instantiating directly
(via __init__()).

class OpType(value)
An enumeration.

__init__(op_type, doc=None, doc_id=None)

classmethod delete(doc)
Factory method for a document delete action

classmethod delete_id(doc_id)
Factory method for a document delete action providing only the ID

classmethod index(doc)
Factory method for a document index action

property is_delete

True if this is a delete action, otherwise False.

property is_index

True if this is an index action, otherwise False.

class corehq.apps.es.client.ElasticDocumentAdapter(index_name, type_)
Base for subclassing document-specific adapters.

Subclasses must define the following:

• mapping: attribute (dict)

• from_python(...): classmethod for converting models into Elastic format

__init__(index_name, type_)
A document adapter for a single index.

Parameters
• index_name – the name of the index that this adapter interacts with

• type – the index _type for the mapping

56.2. Elasticsearch App 343

CommCareHQ Documentation, Release 1.0

bulk(actions, refresh=False, raise_errors=True)
Use the Elasticsearch library’s bulk() helper function to process documents en masse.

Equivalent to the legacy ElasticsearchInterface.bulk_ops(...) method.

Parameters
• actions – iterable of BulkActionItem instances

• refresh – bool refresh the effected shards to make this operation visible to search

• raise_errors – whether or not exceptions should be raised if bulk actions fail. The
default (True) matches that of the elasticsearch-py library’s bulk() helper function (i.e.
raise).

bulk_delete(doc_ids, **bulk_kw)
Convenience method for bulk deleting many documents by ID without the BulkActionItem boilerplate.

Parameters
• doc_ids – iterable of document IDs to be deleted

• bulk_kw – extra parameters passed verbatim to the ElasticDocumentAdapter.bulk()
method.

bulk_index(docs, **bulk_kw)
Convenience method for bulk indexing many documents without the BulkActionItem boilerplate.

Parameters
• docs – iterable of (Python model) documents to be indexed

• bulk_kw – extra parameters passed verbatim to the ElasticDocumentAdapter.bulk()
method.

count(query)
Return the number of documents matched by the query

Parameters
query – dict query body

Returns
int

delete(doc_id, refresh=False)
Delete an existing document from Elasticsearch

Equivalent to the legacy ElasticsearchInterface.delete_doc(...) method.

Parameters
• doc_id – str ID of the document to delete

• refresh – bool refresh the effected shards to make this operation visible to search

delete_tombstones()

Deletes all tombstones documents present in the index

TODO: This should be replaced by delete_by_query https://www.elastic.co/guide/en/elasticsearch/
reference/5.1/docs-delete-by-query.html when on ES version >= 5

exists(doc_id)
Check if a document exists for the provided doc_id

Equivalent to the legacy ElasticsearchInterface.doc_exists(...) method.

344 Chapter 56. Elasticsearch

https://www.elastic.co/guide/en/elasticsearch/reference/5.1/docs-delete-by-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.1/docs-delete-by-query.html

CommCareHQ Documentation, Release 1.0

Parameters
doc_id – str ID of the document to be checked

Returns
bool

export_adapter()

Get an instance of this document adapter configured for “export” queries (i.e. the low-level Elasticsearch
client object is configured with longer request timeouts, etc).

from_python(doc)
Transform a Python model object or model dict into the json-serializable (dict) format suitable for indexing
in Elasticsearch.

Parameters
doc – document (instance of a Python model) or a dict representation of that model

Returns
tuple of (doc_id, source_dict) suitable for being indexed/updated/deleted in Elastic-
search

get(doc_id, source_includes=None)
Return the document for the provided doc_id

Equivalent to the legacy ElasticsearchInterface.get_doc(...) method.

Parameters
• doc_id – str ID of the document to be fetched

• source_includes – a list of fields to extract and return. If None (the default), the entire
document is returned.

Returns
dict

get_docs(doc_ids)
Return multiple docs for the provided doc_ids

Equivalent to the legacy ElasticsearchInterface.get_bulk_docs(...) method.

Parameters
doc_ids – iterable of document IDs (str’s)

Returns
dict

index(doc, refresh=False)
Index (send) a new document in (to) Elasticsearch

Equivalent to the legacy ElasticsearchInterface.index_doc(...) method.

Parameters
• doc – the (Python model) document to index

• refresh – bool refresh the effected shards to make this operation visible to search

iter_docs(doc_ids, chunk_size=100)
Return a generator which fetches documents in chunks.

Parameters
• doc_ids – iterable of document IDs (str s)

56.2. Elasticsearch App 345

CommCareHQ Documentation, Release 1.0

• chunk_size – int number of documents to fetch per query

Yields
dict documents

scroll(query, scroll='5m', size=None)
Perfrom a scrolling search, yielding each doc until the entire context is exhausted.

Parameters
• query – dict raw search query.

• scroll – str time value specifying how long the Elastic cluster should keep the search
context alive.

• size – int scroll size (number of documents per “scroll” page) When set to None (the
default), the default scroll size is used.

Yields
dict documents

search(query, **kw)
Perform a query (search) and return the result.

Parameters
• query – dict search query to execute

• kw – extra parameters passed directly to the underlying elasticsearch.
Elasticsearch.search() method.

Returns
dict

to_json(doc)
Convenience method that returns the full “from python” document (including the _id key, if present) as it
would be returned by an adapter search result.

This method is not used by the adapter itself, and is only present for other code which wishes to work with
documents in a couch-like format.

Parameters
doc – document (instance of a Python model)

update(doc_id, fields, return_doc=False, refresh=False, _upsert=False, retry_on_conflict=None)
Update an existing document in Elasticsearch

Equivalent to the legacy ElasticsearchInterface.update_doc_fields(...) method.

Parameters
• doc_id – str ID of the document to update

• fields – dict of name/values to update on the existing Elastic doc

• return_doc – bool return the full updated doc. When False (the default), None is re-
turned.

• refresh – bool refresh the effected shards to make this operation visible to search

• _upsert – bool. Only needed for multiplexing, use the index() method instead. Create
a new document if one doesn’t already exist. When False (the default), performing an
update request for a missing document will raise an exception.

346 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

• retry_on_conflict – int number of times to retry the update if there is a conflict.
Ignored if None (the default). Otherwise, the value it is passed directly to the low-level
update() method.

Returns
dict or None

class corehq.apps.es.client.ElasticManageAdapter

cancel_task(task_id)
Cancells a running task in ES

Parameters
task_id – str ID of the task

Returns
dict of task details

Raises
TaskError or TaskMissing (subclass of TaskError)

cluster_health(index=None)
Return the Elasticsearch cluster health.

cluster_routing(*, enabled)
Enable or disable cluster routing.

Parameters
enabled – bool whether to enable or disable routing

get_aliases()

Return the cluster aliases information.

Returns
dict with format {<alias>: [<index>, ...], ...}

get_indices(full_info=False)
Return the cluster index information of active indices.

Parameters
full_info – bool whether to return the full index info (default False)

Returns
dict

get_node_info(node_id, metric)
Return a specific metric from the node info for an Elasticsearch node.

Parameters
• node_id – str ID of the node

• metric – str name of the metric to fetch

Returns
deserialized JSON (dict, list, str, etc)

get_task(task_id)
Return the details for an active task

Parameters
task_id – str ID of the task

56.2. Elasticsearch App 347

CommCareHQ Documentation, Release 1.0

Returns
dict of task details

Raises
TaskError or TaskMissing (subclass of TaskError)

index_close(index)
Close an index.

Parameters
index – str index name

index_configure_for_reindex(index)
Update an index with settings optimized for reindexing.

Parameters
index – str index for which to change the settings

index_configure_for_standard_ops(index)
Update an index with settings optimized standard HQ performance.

Parameters
index – str index for which to change the settings

index_create(index, metadata=None)
Create a new index.

Parameters
• index – str index name

• metadata – dict full index metadata (mappings, settings, etc)

index_delete(index)
Delete an existing index.

Parameters
index – str index name

index_exists(index)
Check if index refers to a valid index identifier (index name or alias).

Parameters
index – str index name or alias

Returns
bool

index_flush(index)
Flush an index.

Parameters
index – str index name

index_get_mapping(index, type_)
Returns the current mapping for a doc type on an index.

Parameters
• index – str index to fetch the mapping from

• type – str doc type to fetch the mapping for

348 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

Returns
mapping dict or None if index does not have a mapping

index_get_settings(index, values=None)
Returns the current settings for an index.

Parameters
• index – str index to fetch settings for

• values – Optional collection of explicit settings to provide in the return value. If None
(the default) all settings are returned.

Returns
dict

Raises
KeyError (only if invalid values are provided)

index_put_alias(index, name)
Assign an alias to an existing index. This uses the Elasticsearch.update_aliases() method to per-
form both ‘remove’ and ‘add’ actions simultaneously, which is atomic on the server-side. This ensures
that the alias is only assigned to one index at a time, and that (if present) an existing alias does not vanish
momentarily.

See: https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html

Parameters
• index – str name of the index to be aliased

• name – str name of the alias to assign to index

index_put_mapping(index, type_, mapping)
Update the mapping for a doc type on an index.

Parameters
• index – str index where the mapping should be updated

• type – str doc type to update on the index

• mapping – dict mapping for the provided doc type

index_refresh(index)
Convenience method for refreshing a single index.

index_set_replicas(index, replicas)
Set the number of replicas for an index.

Parameters
• index – str index for which to change the replicas

• replicas – int number of replicas

index_validate_query(index, query, params={})
Returns True if passed query is valid else will return false

indices_info()

Retrieve meta information about all the indices in the cluster. This will also return closed indices :returns:
dict A dict with index name in keys and index meta information.

56.2. Elasticsearch App 349

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html

CommCareHQ Documentation, Release 1.0

indices_refresh(indices)
Refresh a list of indices.

Parameters
indices – iterable of index names or aliases

reindex(source, dest, wait_for_completion=False, refresh=False, batch_size=1000, purge_ids=False,
requests_per_second=None)

Starts the reindex process in elastic search cluster

Parameters
• source – str name of the source index

• dest – str name of the destination index

• wait_for_completion – bool would block the request until reindex is complete

• refresh – bool refreshes index

• requests_per_second – int throttles rate at which reindex issues batches of index op-
erations by padding each batch with a wait time.

• batch_size – int The size of the scroll batch used by the reindex process. larger batches
may process more quickly but risk errors if the documents are too large. 1000 is the rec-
ommended maximum and elasticsearch default, and can be reduced if you encounter scroll
timeouts.

• purge_ids – bool adds an inline script to remove the _id field from documents source.
these cause errors on reindexing the doc, but the script slows down the reindex substantially,
so it is only recommended to enable this if you have run into the specific error it is designed
to resolve.

Returns
None if wait_for_completion is True else would return task_id of reindex task

class corehq.apps.es.client.ElasticMultiplexAdapter(primary_adapter, secondary_adapter)

__init__(primary_adapter, secondary_adapter)

bulk(actions, refresh=False, raise_errors=True)
Apply bulk actions on the primary and secondary.

Bulk actions are applied against the primary and secondary in chunks of 500 actions at a time (replicates
the behavior of the the bulk() helper function). Chunks are applied against the primary and secondary
simultaneously by chunking the original actions in blocks of (up to) 250 and performing a single block
of (up to) 500 actions against both indexes in parallel. Tombstone documents are indexed on the secondary
for any delete actions which succeed on the primary but fail on the secondary.

delete(doc_id, refresh=False)
Delete from both primary and secondary via the bulk()method in order to perform both actions in a single
HTTP request (two, if a tombstone is required).

index(doc, refresh=False)
Index into both primary and secondary via the bulk() method in order to perform both actions in a single
HTTP request.

update(doc_id, fields, return_doc=False, refresh=False, _upsert=False, **kw)
Update on the primary adapter, fetching the full doc; then upsert the secondary adapter.

350 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

class corehq.apps.es.client.Tombstone(doc_id)
Used to create Tombstone documents in the secondary index when the document from primary index is deleted.

This is required to avoid a potential race condition that might ocuur when we run reindex process along with the
multiplexer

__init__(doc_id)

corehq.apps.es.client.create_document_adapter(cls, index_name, type_, *, secondary=None)
Creates and returns a document adapter instance for the parameters provided.

One thing to note here is that the behaviour of the function can be altered with django settings.

The function would return multiplexed adapter only if - ES_<app name>_INDEX_MULTIPLEXED is True -
Secondary index is provided.

The indexes would be swapped only if - ES_<app_name>_INDEX_SWAPPED is set to True - secondary index
is provided

If both ES_<app name>_INDEX_MULTIPLEXED and ES_<app_name>_INDEX_SWAPPED are set to True
then primary index will act as secondary index and vice versa.

Parameters
• cls – an ElasticDocumentAdapter subclass

• index_name – the name of the index that the adapter interacts with

• type – the index _type for the adapter’s mapping.

• secondary – the name of the secondary index in a multiplexing configuration. If an index
name is provided and ES_<app name>_INDEX_MULTIPLEXED is set to True, then re-
turned adapter will be an instance of ElasticMultiplexAdapter. If None (the default),
the returned adapter will be an instance of cls. ES_<app name>_INDEX_MULTIPLEXED
will be ignored if secondary is None.

Returns
a document adapter instance.

corehq.apps.es.client.get_client(for_export=False)
Get an elasticsearch client instance.

Parameters
for_export – (optional bool) specifies whether the returned client should be optimized for
slow export queries.

Returns
elasticsearch.Elasticsearch instance.

56.3 Querying Elasticsearch

56.3.1 ESQuery

ESQuery is a library for building elasticsearch queries in a friendly, more readable manner.

56.3. Querying Elasticsearch 351

CommCareHQ Documentation, Release 1.0

Basic usage

There should be a file and subclass of ESQuery for each index we have.

Each method returns a new object, so you can chain calls together like SQLAlchemy. Here’s an example usage:

q = (FormsES()
.domain(self.domain)
.xmlns(self.xmlns)
.submitted(gte=self.datespan.startdate_param,

lt=self.datespan.enddateparam)
.source(['xmlns', 'domain', 'app_id'])
.sort('received_on', desc=False)
.size(self.pagination.count)
.start(self.pagination.start)
.terms_aggregation('babies.count', 'babies_saved'))

result = q.run()
total_docs = result.total
hits = result.hits

Generally useful filters and queries should be abstracted away for re-use, but you can always add your own like so:

q.filter({"some_arbitrary_filter": {...}})
q.set_query({"fancy_query": {...}})

For debugging or more helpful error messages, you can use query.dumps() and query.pprint(), both of which
use json.dumps() and are suitable for pasting in to ES Head or Marvel or whatever

Filtering

Filters are implemented as standalone functions, so they can be composed and nested q.OR(web_users(),
mobile_users()). Filters can be passed to the query.filter method: q.filter(web_users())

There is some syntactic sugar that lets you skip this boilerplate and just call the filter as if it were a method on the query
class: q.web_users() In order to be available for this shorthand, filters are added to the builtin_filters property
of the main query class. I know that’s a bit confusing, but it seemed like the best way to make filters available in both
contexts.

Generic filters applicable to all indices are available in corehq.apps.es.filters. (But most/all can also be accessed
as a query method, if appropriate)

Filtering Specific Indices

There is a file for each elasticsearch index (if not, feel free to add one). This file provides filters specific to that index,
as well as an appropriately-directed ESQuery subclass with references to these filters.

These index-specific query classes also have default filters to exclude things like inactive users or deleted docs. These
things should nearly always be excluded, but if necessary, you can remove these with remove_default_filters.

352 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

Language

• es_query - the entire query, filters, query, pagination

• filters - a list of the individual filters

• query - the query, used for searching, not filtering

• field - a field on the document. User docs have a ‘domain’ field.

• lt/gt - less/greater than

• lte/gte - less/greater than or equal to

class corehq.apps.es.es_query.ESQuery(index=None, for_export=False)
This query builder only outputs the following query structure:

{
"query": {
"bool": {

"filter": {
"and": [
<filters>

]
},
"query": <query>

}
},
<size, sort, other params>

}

__init__(index=None, for_export=False)

add_query(new_query, clause)
Add a query to the current list of queries

aggregation(aggregation)
Add the passed-in aggregation to the query

property builtin_filters

A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

dumps(pretty=False)
Returns the JSON query that will be sent to elasticsearch.

exclude_source()

Turn off _source retrieval. Mostly useful if you just want the doc_ids

fields(fields)
Restrict the fields returned from elasticsearch

Deprecated. Use source instead.

filter(filter)
Add the passed-in filter to the query. All filtering goes through this class.

56.3. Querying Elasticsearch 353

CommCareHQ Documentation, Release 1.0

property filters

Return a list of the filters used in this query, suitable if you want to reproduce a query with additional
filtering.

get_ids()

Performs a minimal query to get the ids of the matching documents

For very large sets of IDs, use scroll_ids instead

nested_sort(path, field_name, nested_filter, desc=False, reset_sort=True, sort_missing=None)
Order results by the value of a nested field

pprint()

pretty prints the JSON query that will be sent to elasticsearch.

remove_default_filter(default)
Remove a specific default filter by passing in its name.

remove_default_filters()

Sensible defaults are provided. Use this if you don’t want ‘em

run()

Actually run the query. Returns an ESQuerySet object.

scroll()

Run the query against the scroll api. Returns an iterator yielding each document that matches the query.

scroll_ids()

Returns a generator of all matching ids

scroll_ids_to_disk_and_iter_docs()

Returns a ScanResult for all matched documents.

Used for iterating docs for a very large query where consuming the docs via self.scroll() may exceed
the amount of time that the scroll context can remain open. This is achieved by:

1. Fetching the IDs for all matched documents (via scroll_ids()) and caching them in a temporary
file on disk, then

2. fetching the documents by (chunked blocks of) IDs streamed from the temporary file.

Original design PR: https://github.com/dimagi/commcare-hq/pull/20282

Caveats: - There is no guarantee that the returned ScanResult’s count property will match the number of
yielded docs. - Documents that are present when scroll_ids() is called, but are deleted prior to being
fetched in full will be missing from the results, and this scenario will not raise an exception. - If Elastic
document ID values are ever reused (i.e. new documents are created with the same ID of a previously-
deleted document) then this method would become unsafe because it could yield documents that were not
matched by the query.

search_string_query(search_string, default_fields)
Accepts a user-defined search string

set_query(query)
Set the query. Most stuff we want is better done with filters, but if you actually want Levenshtein distance
or prefix querying. . .

set_sorting_block(sorting_block)
To be used with get_sorting_block, which interprets datatables sorting

354 Chapter 56. Elasticsearch

https://github.com/dimagi/commcare-hq/pull/20282

CommCareHQ Documentation, Release 1.0

size(size)
Restrict number of results returned. Analagous to SQL limit, except when performing a scroll, in which
case this value becomes the number of results to fetch per scroll request.

sort(field, desc=False, reset_sort=True)
Order the results by field.

source(include, exclude=None)
Restrict the output of _source in the queryset. This can be used to return an object in a queryset

start(start)
Pagination. Analagous to SQL offset.

values(*fields)
modeled after django’s QuerySet.values

class corehq.apps.es.es_query.ESQuerySet(raw, query)

The object returned from ESQuery.run
• ESQuerySet.raw is the raw response from elasticsearch

• ESQuerySet.query is the ESQuery object

__init__(raw, query)

property doc_ids

Return just the docs ids from the response.

property hits

Return the docs from the response.

static normalize_result(query, result)
Return the doc from an item in the query response.

property total

Return the total number of docs matching the query.

class corehq.apps.es.es_query.HQESQuery(index=None, for_export=False)
Query logic specific to CommCareHQ

property builtin_filters

A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

exception corehq.apps.es.es_query.InvalidQueryError

Query parameters cannot be assembled into a valid search.

56.3.2 Available Filters

The following filters are available on any ESQuery instance - you can chain any of these on your query.

Note also that the term filter accepts either a list or a single element. Simple filters which match against a field are based
on this filter, so those will also accept lists. That means you can do form_query.xmlns(XMLNS1) or form_query.
xmlns([XMLNS1, XMLNS2, ...]).

Contributing: Additions to this file should be added to the builtin_filters method on either ESQuery or HQES-
Query, as appropriate (is it an HQ thing?).

56.3. Querying Elasticsearch 355

CommCareHQ Documentation, Release 1.0

corehq.apps.es.filters.AND(*filters)
Filter docs to match all of the filters passed in

corehq.apps.es.filters.NOT(filter_)
Exclude docs matching the filter passed in

corehq.apps.es.filters.OR(*filters)
Filter docs to match any of the filters passed in

corehq.apps.es.filters.date_range(field, gt=None, gte=None, lt=None, lte=None)
Range filter that accepts date and datetime objects as arguments

corehq.apps.es.filters.doc_id(doc_id)
Filter by doc_id. Also accepts a list of doc ids

corehq.apps.es.filters.doc_type(doc_type)
Filter by doc_type. Also accepts a list

corehq.apps.es.filters.domain(domain_name)
Filter by domain.

corehq.apps.es.filters.empty(field)
Only return docs with a missing or null value for field

corehq.apps.es.filters.exists(field)
Only return docs which have a value for field

corehq.apps.es.filters.geo_bounding_box(field, top_left, bottom_right)
Only return geopoints stored in field that are located within the bounding box defined by top_left and
bottom_right.

top_left and bottom_right accept a range of data types and formats.

More info: Geo Bounding Box Query

corehq.apps.es.filters.geo_grid(field, geohash)
Filters cases by the geohash grid cell in which they are located.

corehq.apps.es.filters.geo_polygon(field, points)
Filters geo_point values in field that fall within the polygon described by the list of points.

More info: Geo Polygon Query

Parameters
• field – A field with Elasticsearch data type geo_point.

• points – A list of points that describe a polygon. Elasticsearch supports a range of formats
for list items.

Returns
A filter dict.

corehq.apps.es.filters.geo_shape(field, shape, relation='intersects')
Filters cases by case properties indexed using the geo_point type.

More info: The Geoshape query reference

Parameters
• field – The field where geopoints are stored

356 Chapter 56. Elasticsearch

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/query-dsl-geo-bounding-box-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/query-dsl-geo-polygon-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.10/query-dsl-geo-shape-query.html

CommCareHQ Documentation, Release 1.0

• shape – A shape definition given in GeoJSON geometry format. More info: The GeoJSON
specification (RFC 7946)

• relation – The relation between the shape and the case property values.

Returns
A filter definition

corehq.apps.es.filters.missing(field)
Only return docs missing a value for field

corehq.apps.es.filters.nested(path, filter_)
Query nested documents which normally can’t be queried directly

corehq.apps.es.filters.non_null(field)
Only return docs with a real, non-null value for field

corehq.apps.es.filters.range_filter(field, gt=None, gte=None, lt=None, lte=None)
Filter field by a range. Pass in some sensible combination of gt (greater than), gte (greater than or equal to),
lt, and lte.

corehq.apps.es.filters.term(field, value)
Filter docs by a field ‘value’ can be a singleton or a list.

56.3.3 Available Queries

Queries are used for actual searching - things like relevancy scores, Levenstein distance, and partial matches.

View the elasticsearch documentation to see what other options are available, and put ‘em here if you end up using any
of ‘em.

corehq.apps.es.queries.filtered(query, filter_)
Filtered query for performing both filtering and querying at once

corehq.apps.es.queries.geo_distance(field, geopoint, **kwargs)
Filters cases to those within a certain distance of the provided geopoint

eg: geo_distance(‘gps_location’, GeoPoint(-33.1, 151.8), kilometers=100)

corehq.apps.es.queries.match_all()

No-op query used because a default must be specified

corehq.apps.es.queries.nested(path, query, *args, **kwargs)
Creates a nested query for use with nested documents

Keyword arguments such as score_mode and others can be added.

corehq.apps.es.queries.nested_filter(path, filter_, *args, **kwargs)
Creates a nested query for use with nested documents

Keyword arguments such as score_mode and others can be added.

corehq.apps.es.queries.search_string_query(search_string, default_fields)
All input defaults to doing an infix search for each term. (This may later change to some kind of fuzzy matching).

This is also available via the main ESQuery class.

56.3. Querying Elasticsearch 357

https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946

CommCareHQ Documentation, Release 1.0

56.3.4 Aggregate Queries

Aggregations are a replacement for Facets

Here is an example used to calculate how many new pregnancy cases each user has opened in a certain date range.

res = (CaseES()
.domain(self.domain)
.case_type('pregnancy')
.date_range('opened_on', gte=startdate, lte=enddate))
.aggregation(TermsAggregation('by_user', 'opened_by')
.size(0)

buckets = res.aggregations.by_user.buckets
buckets.user1.doc_count

There’s a bit of magic happening here - you can access the raw json data from this aggregation via res.
aggregation('by_user') if you’d prefer to skip it.

The res object has a aggregations property, which returns a namedtuple pointing to the wrapped aggregation results.
The name provided at instantiation is used here (by_user in this example).

The wrapped aggregation_result object has a result property containing the aggregation data, as well as
utilties for parsing that data into something more useful. For example, the TermsAggregation result also has a
counts_by_bucket method that returns a {bucket: count} dictionary, which is normally what you want.

As of this writing, there’s not much else developed, but it’s pretty easy to add support for other aggregation types and
more results processing

class corehq.apps.es.aggregations.AggregationRange(start=None, end=None, key=None)
Note that a range includes the “start” value and excludes the “end” value. i.e. start <= X < end

Parameters
• start – range start

• end – range end

• key – optional key name for the range

class corehq.apps.es.aggregations.AggregationTerm(name, field)

field

Alias for field number 1

name

Alias for field number 0

class corehq.apps.es.aggregations.AvgAggregation(name, field)

class corehq.apps.es.aggregations.CardinalityAggregation(name, field)

class corehq.apps.es.aggregations.DateHistogram(name, datefield, interval, timezone=None)
Aggregate by date range. This can answer questions like “how many forms were created each day?”.

Parameters
• name – what do you want to call this aggregation

• datefield – the document’s date field to look at

• interval – the date interval to use - from DateHistogram.Interval

358 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

• timezone – do bucketing using this time zone instead of UTC

__init__(name, datefield, interval, timezone=None)

class corehq.apps.es.aggregations.ExtendedStatsAggregation(name, field, script=None)
Extended stats aggregation that computes an extended stats aggregation by field

class corehq.apps.es.aggregations.FilterAggregation(name, filter)
Bucket aggregation that creates a single bucket for the specified filter

Parameters
• name – aggregation name

• filter – filter body

__init__(name, filter)

class corehq.apps.es.aggregations.FiltersAggregation(name, filters=None)
Bucket aggregation that creates a bucket for each filter specified using the filter name.

Parameters
name – aggregation name

__init__(name, filters=None)

add_filter(name, filter)

Parameters
• name – filter name

• filter – filter body

class corehq.apps.es.aggregations.GeoBoundsAggregation(name, field)
A metric aggregation that computes the bounding box containing all geo_point values for a field.

More info: Geo Bounds Aggregation

__init__(name, field)

class corehq.apps.es.aggregations.GeohashGridAggregation(name, field, precision)
A multi-bucket aggregation that groups geo_point and geo_shape values into buckets that represent a grid.

More info: Geohash grid aggregation

__init__(name, field, precision)
Initialize a GeohashGridAggregation

Parameters
• name – The name of this aggregation

• field – The case property that stores a geopoint

• precision – A value between 1 and 12

High precision geohashes have a long string length and represent cells that cover only a small area (similar
to long-format ZIP codes like “02139-4075”).

Low precision geohashes have a short string length and represent cells that each cover a large area (similar
to short-format ZIP codes like “02139”).

class corehq.apps.es.aggregations.MaxAggregation(name, field)

56.3. Querying Elasticsearch 359

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-metrics-geobounds-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-geohashgrid-aggregation.html

CommCareHQ Documentation, Release 1.0

class corehq.apps.es.aggregations.MinAggregation(name, field)
Bucket aggregation that returns the minumum value of a field

Parameters
• name – aggregation name

• field – name of the field to min

class corehq.apps.es.aggregations.MissingAggregation(name, field)
A field data based single bucket aggregation, that creates a bucket of all documents in the current document set
context that are missing a field value (effectively, missing a field or having the configured NULL value set).

Parameters
• name – aggregation name

• field – name of the field to bucket on

__init__(name, field)

class corehq.apps.es.aggregations.NestedAggregation(name, path)
A special single bucket aggregation that enables aggregating nested documents.

Parameters
path – Path to nested document

__init__(name, path)

class corehq.apps.es.aggregations.NestedTermAggregationsHelper(base_query, terms)
Helper to run nested term-based queries (equivalent to SQL group-by clauses). This is not at all related to the
ES ‘nested aggregation’. The final aggregation is a count of documents.

Example usage:

counting all forms submitted in a domain grouped by app id and user id

NestedTermAggregationsHelper(
base_query=FormES().domain(domain_name),
terms=[

AggregationTerm('app_id', 'app_id'),
AggregationTerm('user_id', 'form.meta.userID'),

]
).get_data()

This works by bucketing docs first by one terms aggregation, then within that bucket, bucketing further by the
next term, and so on. This is then flattened out to appear like a group-by-multiple.

__init__(base_query, terms)

class corehq.apps.es.aggregations.RangeAggregation(name, field, ranges=None, keyed=True)
Bucket aggregation that creates one bucket for each range :param name: the aggregation name :param field: the
field to perform the range aggregations on :param ranges: list of AggregationRange objects :param keyed: set to
True to have the results returned by key instead of as a list (see RangeResult.normalized_buckets)

__init__(name, field, ranges=None, keyed=True)

class corehq.apps.es.aggregations.StatsAggregation(name, field, script=None)
Stats aggregation that computes a stats aggregation by field

Parameters

360 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

• name – aggregation name

• field – name of the field to collect stats on

• script – an optional field to allow you to script the computed field

__init__(name, field, script=None)

class corehq.apps.es.aggregations.SumAggregation(name, field)
Bucket aggregation that sums a field

Parameters
• name – aggregation name

• field – name of the field to sum

__init__(name, field)

class corehq.apps.es.aggregations.TermsAggregation(name, field, size=None, missing=None)
Bucket aggregation that aggregates by field

Parameters
• name – aggregation name

• field – name of the field to bucket on

• size –

• missing – define how documents that are missing a value should be treated. By default,
they will be ignored. If a value is supplied here it will be used where the value is missing.

__init__(name, field, size=None, missing=None)

class corehq.apps.es.aggregations.TopHitsAggregation(name, field=None, is_ascending=True, size=1,
include=None)

A top_hits metric aggregator keeps track of the most relevant document being aggregated This aggregator is
intended to be used as a sub aggregator, so that the top matching documents can be aggregated per bucket.

Parameters
• name – Aggregation name

• field – This is the field to sort the top hits by. If None, defaults to sorting by score.

• is_ascending – Whether to sort the hits in ascending or descending order.

• size – The number of hits to include. Defaults to 1.

• include – An array of fields to include in the hit. Defaults to returning the whole document.

__init__(name, field=None, is_ascending=True, size=1, include=None)

class corehq.apps.es.aggregations.ValueCountAggregation(name, field)

56.3. Querying Elasticsearch 361

CommCareHQ Documentation, Release 1.0

56.3.5 AppES

class corehq.apps.es.apps.AppES(index=None, for_export=False)

property builtin_filters

A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

index = 'apps'

class corehq.apps.es.apps.ElasticApp(index_name, type_)

canonical_name = 'apps'

property mapping

property model_cls

settings_key = 'hqapps'

corehq.apps.es.apps.app_id(app_id)

corehq.apps.es.apps.build_comment(comment)

corehq.apps.es.apps.cloudcare_enabled(cloudcare_enabled)

corehq.apps.es.apps.created_from_template(from_template=True)

corehq.apps.es.apps.is_build(build=True)

corehq.apps.es.apps.is_released(released=True)

corehq.apps.es.apps.uses_case_sharing(case_sharing=True)

corehq.apps.es.apps.version(version)

56.3.6 UserES

Here’s an example adapted from the case list report - it gets a list of the ids of all unknown users, web users, and demo
users on a domain.

from corehq.apps.es import users as user_es

user_filters = [
user_es.unknown_users(),
user_es.web_users(),
user_es.demo_users(),

]

query = (user_es.UserES()
.domain(self.domain)
.OR(*user_filters)
.show_inactive())

owner_ids = query.get_ids()

362 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

class corehq.apps.es.users.ElasticUser(index_name, type_)

canonical_name = 'users'

property mapping

property model_cls

settings_key = 'hqusers'

class corehq.apps.es.users.UserES(index=None, for_export=False)

property builtin_filters

A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

default_filters = {'active': {'term': {'is_active': True}}, 'not_deleted':
{'term': {'base_doc': 'couchuser'}}}

index = 'users'

show_inactive()

Include inactive users, which would normally be filtered out.

show_only_inactive()

corehq.apps.es.users.admin_users()

Return only AdminUsers. Admin users are mock users created from xform submissions with unknown user ids
whose username is “admin”.

corehq.apps.es.users.analytics_enabled(enabled=True)

corehq.apps.es.users.created(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.users.demo_users()

Matches users whose username is demo_user

corehq.apps.es.users.domain(domain, allow_enterprise=False)

corehq.apps.es.users.domains(domains)

corehq.apps.es.users.is_active(active=True)

corehq.apps.es.users.is_practice_user(practice_mode=True)

corehq.apps.es.users.last_logged_in(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.users.location(location_id)

corehq.apps.es.users.missing_or_empty_user_data_property(property_name)
A user_data property doesn’t exist, or does exist but has an empty string value.

corehq.apps.es.users.mobile_users()

corehq.apps.es.users.role_id(role_id)

corehq.apps.es.users.unknown_users()

Return only UnknownUsers. Unknown users are mock users created from xform submissions with unknown user
ids.

56.3. Querying Elasticsearch 363

CommCareHQ Documentation, Release 1.0

corehq.apps.es.users.user_data(key, value)

corehq.apps.es.users.user_ids(user_ids)

corehq.apps.es.users.username(username)

corehq.apps.es.users.web_users()

56.3.7 CaseES

Here’s an example getting pregnancy cases that are either still open or were closed after May 1st.

from corehq.apps.es import cases as case_es

q = (case_es.CaseES()
.domain('testproject')
.case_type('pregnancy')
.OR(case_es.is_closed(False),

case_es.closed_range(gte=datetime.date(2015, 05, 01))))

class corehq.apps.es.cases.CaseES(index=None, for_export=False)

property builtin_filters

A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

index = 'cases'

class corehq.apps.es.cases.ElasticCase(index_name, type_)

canonical_name = 'cases'

property mapping

property model_cls

settings_key = 'hqcases'

corehq.apps.es.cases.active_in_range(gt=None, gte=None, lt=None, lte=None)
Restricts cases returned to those with actions during the range

corehq.apps.es.cases.case_ids(case_ids)

corehq.apps.es.cases.case_name(name)

corehq.apps.es.cases.case_type(type_)

corehq.apps.es.cases.closed_range(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.cases.is_closed(closed=True)

corehq.apps.es.cases.modified_range(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.cases.open_case_aggregation(name='open_case', gt=None, gte=None, lt=None,
lte=None)

corehq.apps.es.cases.opened_by(user_id)

364 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

corehq.apps.es.cases.opened_range(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.cases.owner(owner_id)

corehq.apps.es.cases.owner_type(owner_type)

corehq.apps.es.cases.server_modified_range(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.cases.touched_total_aggregation(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.cases.user(user_id)

corehq.apps.es.cases.user_ids_handle_unknown(user_ids)

56.3.8 FormES

class corehq.apps.es.forms.ElasticForm(index_name, type_)

canonical_name = 'forms'

property mapping

property model_cls

settings_key = 'xforms'

class corehq.apps.es.forms.FormES(index=None, for_export=False)

property builtin_filters

A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

default_filters = {'has_domain': {'exists': {'field': 'domain'}}, 'has_user':
{'exists': {'field': 'form.meta.userID'}}, 'has_xmlns': {'exists': {'field':
'xmlns'}}, 'is_xform_instance': {'term': {'doc_type': 'xforminstance'}}}

domain_aggregation()

index = 'forms'

only_archived()

Include only archived forms, which are normally excluded

user_aggregation()

corehq.apps.es.forms.app(app_ids)

corehq.apps.es.forms.completed(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.forms.form_ids(form_ids)

corehq.apps.es.forms.submitted(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.forms.updating_cases(case_ids)
return only those forms that have case blocks that touch the cases listed in case_ids

corehq.apps.es.forms.user_id(user_ids)

56.3. Querying Elasticsearch 365

CommCareHQ Documentation, Release 1.0

corehq.apps.es.forms.user_ids_handle_unknown(user_ids)

corehq.apps.es.forms.user_type(user_types)

corehq.apps.es.forms.xmlns(xmlnss)

56.3.9 DomainES

from corehq.apps.es import DomainES

query = (DomainES()
.in_domains(domains)
.created(gte=datespan.startdate, lte=datespan.enddate)
.size(0))

class corehq.apps.es.domains.DomainES(index=None, for_export=False)

property builtin_filters

A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

default_filters = {'not_snapshot': {'bool': {'must_not': {'term':
{'is_snapshot': True}}}}}

index = 'domains'

only_snapshots()

Normally snapshots are excluded, instead, return only snapshots

class corehq.apps.es.domains.ElasticDomain(index_name, type_)

analysis = {'analyzer': {'comma': {'pattern': '\\s*,\\s*', 'type': 'pattern'},
'default': {'filter': ['lowercase'], 'tokenizer': 'whitespace', 'type':
'custom'}}}

canonical_name = 'domains'

property mapping

property model_cls

settings_key = 'hqdomains'

corehq.apps.es.domains.created(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.domains.created_by_user(creating_user)

corehq.apps.es.domains.in_domains(domains)

corehq.apps.es.domains.incomplete_domains()

corehq.apps.es.domains.is_active(is_active=True)

corehq.apps.es.domains.is_active_project(is_active=True)

corehq.apps.es.domains.last_modified(gt=None, gte=None, lt=None, lte=None)

366 Chapter 56. Elasticsearch

CommCareHQ Documentation, Release 1.0

corehq.apps.es.domains.non_test_domains()

corehq.apps.es.domains.real_domains()

corehq.apps.es.domains.self_started()

56.3.10 SMSES

class corehq.apps.es.sms.ElasticSMS(index_name, type_)

canonical_name = 'sms'

property mapping

property model_cls

settings_key = 'smslogs'

class corehq.apps.es.sms.SMSES(index=None, for_export=False)

property builtin_filters

A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

index = 'sms'

user_aggregation()

corehq.apps.es.sms.direction(direction_)

corehq.apps.es.sms.incoming_messages()

corehq.apps.es.sms.outgoing_messages()

corehq.apps.es.sms.processed(processed=True)

corehq.apps.es.sms.processed_or_incoming_messages()

corehq.apps.es.sms.received(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.sms.to_commcare_case()

corehq.apps.es.sms.to_commcare_user()

corehq.apps.es.sms.to_commcare_user_or_case()

corehq.apps.es.sms.to_couch_user()

corehq.apps.es.sms.to_web_user()

56.3. Querying Elasticsearch 367

CommCareHQ Documentation, Release 1.0

368 Chapter 56. Elasticsearch

CHAPTER

FIFTYSEVEN

MIDDLEWARE

57.1 What is middleware?

HQ uses a number of types of middleware, defined in settings.py. For background on middleware, see the Django
docs

57.2 TimeoutMiddleware

TimeoutMiddleware controls a session-based inactivity timeout, where the user is logged out after a period of inac-
tivity.

The default timeout, defined in settings.py as INACTIVITY_TIMEOUT, is two weeks, long enough that regular users
will not encounter it.

Most of TimeoutMiddleware deals with domains that enforce a shorter timeout for security purposes.

The shorter timeout is enabled using the “Shorten Inactivity Timeout” checkbox in Project Settings > Privacy, and
stored as the Domain attribute secure_sessions. This document wil refer to domains using this feature as “secure”
domains. By default, secure domains time their users out after 30 minutes of inactivity. This duration is controlled by
SECURE_TIMEOUT in settings.py.

“Activity” refers to web requests to HQ. This includes formplayer requests, as formplayer issues a request to HQ for ses-
sion details that extends the user’s session; see SessionDetailsView. In secure domains, there is also javascript-based
logic in hqwebapp/js/inactivity that periodically pings HQ for the purpose of extending the session, provided that
the user has recently pressed a key or clicked their mouse.

When a user’s session times out, they are logged out, so their next request will redirect them to the login page. This
works acceptably for most of HQ but is a bad experience when in an area that relies heavily on ajax requests, which
will all start to fail without indicating to the user why. To avoid this there is a logout UI, also controlled by hqwebapp/
js/inactivity, which tracks when the user’s session is scheduled to expire. This UI pops up a warning dialog when
the session is close to expiring. When the session does expire, the UI pops up a dialog that allows the user to re-login
without leaving the page. This UI is enabled whenever the user is on a domain-specific page and has a secure session.
Note that the user’s session may be secure even if the domain they are viewing is not secure; more on this below.

A user’s session is marked secure is any of the following are true:

• The user is viewing a secure domain.

• The user is a member of any domain that uses secure sessions.

• The session has already been marked secure by a previous request.

This behavior makes secure sessions “sticky”, following the user around after they visit a secure domain. Note that the
session is cleared when the user logs out or is forced out due to inactivity.

369

https://docs.djangoproject.com/en/3.0/topics/http/middleware/
https://docs.djangoproject.com/en/3.0/topics/http/middleware/

CommCareHQ Documentation, Release 1.0

The feature flag SECURE_SESSION_TIMEOUT allows domains to customize the length of their timeout. When this is on,
the domain can specify a number of minutes, which will be used in place of the default 30-minute SECURE_TIMEOUT.
When a user is affected by multiple domains, with different timeout durations, the minimum duration is used. As with
the secure session flag itself, the relevant durations are the current domain, and other domains where the user is a
member, and the duration value currently stored in the session. So a user who belongs to two secure domains, one with
the standard 30-minute timeout and one with a 15-minute timeout, will always experience a 15-minute timeout. A user
who belongs to no secure domains but who visits a domain with a 45-minute timeout will then experience a 45-minute
timeout until the next time they log out and back in.

370 Chapter 57. Middleware

CHAPTER

FIFTYEIGHT

USING THE SHARED NFS DRIVE

On our production servers (and staging) we have an NFS drive set up that we can use for a number of things:

• store files that are generated asynchronously for retrieval in a later request * previously we needed to save these
files to Redis so that they would be available to all the Django workers on the next request * doing this has the
added benefit of allowing apache / nginx to handle the file transfer instead of Django

• store files uploaded by the user that require asynchronous processing

58.1 Using apache / nginx to handle downloads

import os
import tempfile
from wsgiref.util import FileWrapper
from django.conf import settings
from django.http import StreamingHttpResponse
from django_transfer import TransferHttpResponse

transfer_enabled = settings.SHARED_DRIVE_CONF.transfer_enabled
if transfer_enabled:

path = os.path.join(settings.SHARED_DRIVE_CONF.transfer_dir, uuid.uuid4().hex)
else:

fd, path = tempfile.mkstemp()
os.close(fd)

make_file(path)

if transfer_enabled:
response = TransferHttpResponse(path, content_type=self.zip_mimetype)

else:
response = StreamingHttpResponse(FileWrapper(open(path)), content_type=self.zip_

→˓mimetype)

response['Content-Length'] = os.path.getsize(fpath)
response["Content-Disposition"] = 'attachment; filename="%s"' % filename
return response

This also works for files that are generated asynchronously:

@task
def generate_download(download_id):

(continues on next page)

371

CommCareHQ Documentation, Release 1.0

(continued from previous page)

use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled
if use_transfer:

path = os.path.join(settings.SHARED_DRIVE_CONF.transfer_dir, uuid.uuid4().hex)
else:

fd, path = tempfile.mkstemp()
os.close(fd)

generate_file(path)

common_kwargs = dict(
mimetype='application/zip',
content_disposition='attachment; filename="{fname}"'.format(fname=filename),
download_id=download_id,

)
if use_transfer:

expose_file_download(
path,
use_transfer=use_transfer,
**common_kwargs

)
else:

expose_cached_download(
FileWrapper(open(path)),
expiry=(1 * 60 * 60),
**common_kwargs

)

58.2 Saving uploads to the NFS drive

For files that are uploaded and require asynchronous processing e.g. imports, you can also use the NFS drive:

from soil.util import expose_file_download, expose_cached_download

uploaded_file = request.FILES.get('Filedata')
if hasattr(uploaded_file, 'temporary_file_path') and settings.SHARED_DRIVE_CONF.temp_dir:

path = settings.SHARED_DRIVE_CONF.get_temp_file()
shutil.move(uploaded_file.temporary_file_path(), path)
saved_file = expose_file_download(path, expiry=60 * 60)

else:
uploaded_file.file.seek(0)
saved_file = expose_cached_download(uploaded_file.file.read(), expiry=(60 * 60))

process_uploaded_file.delay(saved_file.download_id)

372 Chapter 58. Using the shared NFS drive

CHAPTER

FIFTYNINE

HOW TO USE AND REFERENCE FORMS AND CASES
PROGRAMATICALLY

With the introduction of the new architecture for form and case data it is now necessary to use generic functions and
accessors to access and operate on the models.

This document provides a basic guide for how to do that.

Models
CommCareCase
CaseTransaction
CaseAttachment
CommCareCaseIndex
XFormInstance
XFormOperation

Form Instance API

Property / method Description
form.form_id The instance ID of the form
form.is_normal
form.is_deleted
form.is_archived
form.is_error
form.is_deprecated
form.is_duplicate
form.is_submission_error_log

Replacement for checking the
doc_type of a form

form.attachments The form attachment objects
form.get_attachment Get an attachment by name
form.archive Archive a form
form.unarchive Unarchive a form
form.to_json Get the JSON representation

of a form
form.form_data Get the XML form data

Case API

373

CommCareHQ Documentation, Release 1.0

Property / method Description
case.case_id ID of the case
case.is_deleted Replacement for doc_type check
case.case_name Name of the case
case.get_attachment Get attachment by name
case.dynamic_case_properties Dictionary of dynamic case properties
case.get_subcases Get subcase objects
case.get_index_map Get dictionary of case indices

59.1 Model acessors

To access models from the database there are classes that abstract the actual DB operations. These classes are generally
names <type>Accessors and must be instantiated with a domain name in order to know which DB needs to be queried.

Forms
• XFormInstance.objects.get_form(form_id, domain)

• XFormInstance.objects.get_forms(form_ids, domain)

• XFormInstance.objects.iter_forms(form_ids, domain)

• XFormInstance.objects.save_new_form(form)

– only for new forms

• XFormInstance.objects.get_with_attachments(form, domain)

– Preload attachments to avoid having to the the DB again

Cases
• CommCareCase.objects.get_case(case_id, domain)

• CommCareCase.objects.get_cases(case_ids, domain)

• CommCareCase.objects.iter_cases(case_ids, domain)

• CommCareCase.objects.get_case_ids_in_domain(domain, type=’dog’)

Ledgers
• LedgerAccessors(domain).get_ledger_values_for_case(case_id)

For more details see:

• corehq.form_processor.interfaces.dbaccessors.LedgerAccessors

59.2 Unit Tests

To create a form in unit tests use the following pattern:

from corehq.form_processor.utils import get_simple_wrapped_form, TestFormMetadata

def test_my_form_function(self):
This TestFormMetadata specifies properties about the form to be created
metadata = TestFormMetadata(

(continues on next page)

374 Chapter 59. How to use and reference forms and cases programatically

CommCareHQ Documentation, Release 1.0

(continued from previous page)

domain=self.user.domain,
user_id=self.user._id,

)
form = get_simple_wrapped_form(

form_id,
metadata=metadata

)

Creating cases can be done with the CaseFactory:

from casexml.apps.case.mock import CaseFactory

def test_my_case_function(self):
factory = CaseFactory(domain='foo')
case = factory.create_case(

case_type='my_case_type',
owner_id='owner1',
case_name='bar',
update={'prop1': 'abc'}

)

59.2.1 Cleaning up

Cleaning up in tests can be done using the FormProcessorTestUtils1 class:

from corehq.form_processor.tests.utils import FormProcessorTestUtils

def tearDown(self):
FormProcessorTestUtils.delete_all_cases()
OR
FormProcessorTestUtils.delete_all_cases(domain=domain)

FormProcessorTestUtils.delete_all_xforms()
OR
FormProcessorTestUtils.delete_all_xforms(domain=domain)

59.2. Unit Tests 375

CommCareHQ Documentation, Release 1.0

376 Chapter 59. How to use and reference forms and cases programatically

CHAPTER

SIXTY

PLAYING NICE WITH CLOUDANT/COUCHDB

We have a lot of views:

$ find . -path *_design*/map.js | wc -l
159

Things to know about views:

1. Every time you create or update a doc, each map function is run on it and the btree for the view is updated based
on the change in what the maps emit for that doc. Deleting a doc causes the btree to be updated as well.

2. Every time you update a view, all views in the design doc need to be run, from scratch, in their entirety, on every
single doc in the database, regardless of doc_type.

Things to know about our Cloudant cluster:

1. It’s slow. You have to wait in line just to say “hi”. Want to fetch a single doc? So does everyone else. Get in line,
I’ll be with you in just 1000ms.

2. That’s pretty much it.

Takeaways:

1. Don’t save docs! If nothing changed in the doc, just don’t save it. Couchdb isn’t smart enough to realize that
nothing changed, so saving it incurs most of the overhead of saving a doc that actually changed.

2. Don’t make http requests! If you need a bunch of docs by id, get them all in one request or a few large requests
using dimagi.utils.couch.database.iter_docs.

3. Don’t make http requests! If you want to save a bunch of docs, save them all at once (after excluding the ones
that haven’t changed and don’t need to be saved!) using MyClass.get_db().bulk_save(docs). Note that
this isn’t good for saving thousands of documents, because it doesn’t do any chunking.

4. Don’t save too many docs in too short a time! To give the views time to catch up, rate-limit your saves if going
through hundreds of thousands of docs. One way to do this is to save N docs and then make a tiny request to the
view you think will be slowest to update, and then repeat.

5. Use different databases! All forms and cases save to the main database, but there is a _meta database we have
just added for new doc or migrated doc types. When you use a different database you create two advantages: a)
Documents you save don’t contribute to the view indexing load of all of the views in the main database. b) Views
you add don’t have to run on all forms and cases.

6. Split views! When a single view changes, the entire design doc has to reindex. If you make a new view, it’s
much better to make a new design doc for it than to put it in with some other big, possibly expensive views. We
use the couchapps folder/app for this.

377

http://guide.couchdb.org/draft/btree.html

CommCareHQ Documentation, Release 1.0

378 Chapter 60. Playing nice with Cloudant/CouchDB

CHAPTER

SIXTYONE

CELERY

Official Celery documentation: http://docs.celeryproject.org/en/latest/ What is it ==========

Celery is a library we use to perform tasks outside the bounds of an HTTP request.

61.1 How to use celery

All celery tasks should go into a tasks.py file or tasks module in a django app. This ensures that autodiscover_tasks
can find the task and register it with the celery workers.

These tasks should be decorated with one of the following:

1. @task defines a task that is called manually (with task_function_name.delay in code)

2. @periodic_task defines a task that is called at some interval (specified by crontab in the decorator)

3. @serial_task defines a task that should only ever have one job running at one time

61.2 Best practices

Do not pass objects to celery. Instead, IDs can be passed and the celery task can retrieve the object from the database
using the ID. This keeps message lengths short and reduces burden on RabbitMQ as well as preventing tasks from
operating on stale data.

Do not specify serializer='pickle' for new tasks. This is a deprecated message serializer and by default, we now
use JSON.

379

http://docs.celeryproject.org/en/latest/

CommCareHQ Documentation, Release 1.0

380 Chapter 61. Celery

CommCareHQ Documentation, Release 1.0

61.3 Queues

Table 1: Queues

QueueI/O
Bound?

Tar-
get
max
time-
to-
start

Target max
time-to-start
comments

Description of
usage

How
long
does
the
typical
task
take
to
com-
plete?

Best practices / Notes

send_report_throttledhours 30 min-
utes: reports
should be
sent as close
to schedule
as possi-
ble. EDIT:
this queue
only affects
mvp-* and
ews-ghana

This is used
specifically for
domains who
are abusing
Scheduled
Reports and
overwhelming
the background
queue. See set-
tings.THROTTLE_SCHED_REPORTS_PATTERNS

sub-
mis-
sion_reprocessing_queue

no? hours 1 hour: not
critical if this
gets behind
as long as it
can keep up
within a few
hours

Reprocess
form sub-
missions that
errored in ways
that can be
handled by
HQ. Triggered
by ‘submis-
sion_reprocessing_queue’
process.

sec-
onds

sumo-
logic_logs_queue

yes hours 1 hour: OK
for this to get
behind

Forward de-
vice logs to
sumologic.
Triggered by
device log
submission
from mobile.

sec-
onds

Non-essential queue

an-
a-
lyt-
ics_queue

yes min-
utes

Used to run
tasks related
to external
analytics tools
like HubSpot.
Triggered by
user actions on
the site.

in-
stanta-
neous
(sec-
onds)

re-
minder_case_update_queue

min-
utes

Run reminder
tasks related to
case changes.
Triggered by
case change
signal.

sec-
onds

re-
minder_queue

yes min-
utes

15 minutes:
since these
are scheduled
it can be
important for
them to get
triggered on
time

Runs the re-
minder rule
tasks for re-
minders that
are due. Trig-
gered by the
‘queue_scheduled_instances’
process.

sec-
onds

re-
minder_rule_queue

min-
utes

Run messaging
rules after
changes to
rules. Trig-
gered by
changes to
rules.

min-
utes /
hours

re-
peat_record_queue

min-
utes

ideally min-
utes but might
be ok if it gets
behind during
peak

Run tasks
for repeaters.
Triggered by
repeater queue
process.

sec-
onds

sms_queueyes min-
utes

5 minutes?:
depends
largely on
the messag-
ing. Some
messages are
more time
sensitive than
others. We
don’t have a
way to tell so
ideally they
should all go
out ASAP.

Used to send
SMSs that have
been queued.
Triggered by
‘run_sms_queue’
process.

sec-
onds

async_restore_queueno sec-
onds

Generate re-
store response
for mobile
phones. Gets
triggered for
sync requests
that have async
restore flag.

case_import_queuesec-
onds

Run case im-
ports

min-
utes /
hours

email_queueyes sec-
onds

generally
seconds, since
people often
blocked on
receiving
the email
(registration
workflows for
example)

Send emails. sec-
onds

ex-
port_download_queue

sec-
onds

seconds / min-
utes

Used for
manually-
triggered
exports

min-
utes

icds_dashboard_reports_queuesec-
onds

fast

back-
ground_queue

varies
wildly

beat N/A
case_rule_queue Run case

update rules.
Triggered by
schedule

min-
utes /
hours

cel-
ery
cel-
ery_periodic

In-
voice
gener-
ation:
~2
hours
on pro-
duc-
tion.
Runs
as a
single
task,
once
per
month.

I think this is one of the trickiest ones (and most
heterogenous) because we run lots of scheduled
tasks, that we expect to happen at a certain time,
some of which we want at exactly that time and
some we are ok with delay in start.

flower N/A
icds_aggregation_queueyes initial task is

immediate.
follow up
tasks are con-
strained by
performance
of previous
tasks. rec-
ommend not
tracking

Run aggre-
gation tasks
for ICDS.
Triggered by
schedule.

lo-
gis-
tics_background_queue

Custom queue

lo-
gis-
tics_reminder_queue

Custom queue

saved_exports_queue Used only
for regularly
scheduled
exports. Trig-
gered by
schedule.

min-
utes

This queue is used only for regularly scheduled
exports, which are not user-triggered. The time
taken to process a saved export depends on the
export itself. We now save the time taken to run
the saved export as last_build_duration which
can be used to monitor or move the task to a dif-
ferent queue that handles big tasks. Since all ex-
ports are triggered at the same time (midnight
UTC) the queue gets big. Could be useful to
spread these out so that the exports are generated
at midnight in the TZ of the domain (see callcen-
ter tasks for where this is already done)

ucr_indicator_queueno Used for ICDS
very expen-
sive UCRs to
aggregate

ucr_queueno Used to rebuild
UCRs

min-
utes to
hours

This is where UCR data source rebuilds occur.
Those have an extremely large variation. May
be best to split those tasks like “Process 1000
forms/cases, then requeue” so as to not block

61.3. Queues 381

CommCareHQ Documentation, Release 1.0

61.4 Soil

Soil is a Dimagi utility to provide downloads that are backed by celery.

To use soil:

from soil import DownloadBase
from soil.progress import update_task_state
from soil.util import expose_cached_download

@task
def my_cool_task():

DownloadBase.set_progress(my_cool_task, 0, 100)

do some stuff

DownloadBase.set_progress(my_cool_task, 50, 100)

do some more stuff

DownloadBase.set_progress(my_cool_task, 100, 100)

expose_cached_download(payload, expiry, file_extension)

For error handling update the task state to failure and provide errors, HQ currently supports two options:

61.4.1 Option 1

This option raises a celery exception which tells celery to ignore future state updates. The resulting task result will not
be marked as “successful” so task.successful() will return False If calling with CELERY_TASKS_ALWAYS_EAGER
= True (i.e. a dev environment), and with .delay(), the exception will be caught by celery and task.result will
return the exception.

from celery.exceptions import Ignore
from soil import DownloadBase
from soil.progress import update_task_state
from soil.util import expose_cached_download

@task
def my_cool_task():

try:
do some stuff

except SomeError as err:
errors = [err]
update_task_state(my_cool_task, states.FAILURE, {'errors': errors})
raise Ignore()

382 Chapter 61. Celery

CommCareHQ Documentation, Release 1.0

61.4.2 Option 2

This option raises an exception which celery does not catch. Soil will catch this and set the error to the error message
in the exception. The resulting task will be marked as a failure meaning task.failed() will return True If calling
with CELERY_TASKS_ALWAYS_EAGER = True (i.e. a dev environment), the exception will “bubble up” to the calling
code.

from soil import DownloadBase
from soil.progress import update_task_state
from soil.util import expose_cached_download

@task
def my_cool_task():

do some stuff
raise SomeError("my uncool error")

61.5 Testing

As noted in the [celery docs](http://docs.celeryproject.org/en/v4.2.1/userguide/testing.html) testing tasks in celery is
not the same as in production. In order to test effectively, mocking is required.

An example of mocking with Option 1 from the soil documentation:

@patch('my_cool_test.update_state')
def my_cool_test(update_state):

res = my_cool_task.delay()
self.assertIsInstance(res.result, Ignore)
update_state.assert_called_with(

state=states.FAILURE,
meta={'errors': ['my uncool errors']}

)

61.6 Other references

https://docs.google.com/presentation/d/1iiiVZDiOGXoLeTvEIgM_rGgw6Me5_wM_Cyc64bl7zns/edit#slide=id.
g1d621cb6fc_0_372

https://docs.google.com/spreadsheets/d/10uv0YBVTGi88d6mz6xzwXRLY5OZLW1FJ0iarHI6Orck/edit?ouid=
112475836275787837666&usp=sheets_home&ths=true

61.5. Testing 383

http://docs.celeryproject.org/en/v4.2.1/userguide/testing.html
https://docs.google.com/presentation/d/1iiiVZDiOGXoLeTvEIgM_rGgw6Me5_wM_Cyc64bl7zns/edit#slide=id.g1d621cb6fc_0_372
https://docs.google.com/presentation/d/1iiiVZDiOGXoLeTvEIgM_rGgw6Me5_wM_Cyc64bl7zns/edit#slide=id.g1d621cb6fc_0_372
https://docs.google.com/spreadsheets/d/10uv0YBVTGi88d6mz6xzwXRLY5OZLW1FJ0iarHI6Orck/edit?ouid=112475836275787837666&usp=sheets_home&ths=true
https://docs.google.com/spreadsheets/d/10uv0YBVTGi88d6mz6xzwXRLY5OZLW1FJ0iarHI6Orck/edit?ouid=112475836275787837666&usp=sheets_home&ths=true

CommCareHQ Documentation, Release 1.0

384 Chapter 61. Celery

CHAPTER

SIXTYTWO

CONFIGURING SQL DATABASES IN COMMCARE

CommCare makes use of a number of logically different SQL databases. These databases can be all be a single physical
database or configured as individual databases.

By default CommCare will use the default Django database for all SQL data.

62.1 Auditcare Data

Auditcare data may be stored in a separate database by specifying a mapping in the LOCAL_CUSTOM_DB_ROUTING
setting. A database with the specified alias must also exist in the Django DATABASES setting. Example configuration:

LOCAL_CUSTOM_DB_ROUTING = {"auditcare": "auditcare"}

It is recommended to use a separate database in high-traffic environments when auditcare is enabled. Auditcare is
enabled for a subset of URLs by default.

385

CommCareHQ Documentation, Release 1.0

62.2 Synclog Data

Synclog data may be stored in a separate database specified by the SYNCLOGS_SQL_DB_ALIAS setting. The value of
this setting must be a DB alias in the Django DATABASES setting.

62.3 UCR Data

Data created by the UCR framework can be stored in multiple separate databases. Each UCR defines an engine_id
parameter which tells it which configured database engine to use. These engines are defined in the REPORT-
ING_DATABASES Django setting which maps the engine_id to a Django database alias defined in the DATABASES
setting.

REPORTING_DATABASES = {
'default': 'default',
'ucr': 'ucr'

}

62.4 Sharded Form and Case data

It is recommended to have a separate set of databases to store data for Forms and Cases (as well as a few other models).

CommCare uses a combination of plproxy custom Python code to split the Form and Case data into multiple databases.

The general rule is that if a query needs to be run on all (or most) shard databases it should go through plproxy since
plproxy is more efficient at running multiple queries and compiling the results.

The configuration for these databases must be added to the DATABASES setting as follows:

USE_PARTITIONED_DATABASE = True

DATABASES = {
'proxy': {

(continues on next page)

386 Chapter 62. Configuring SQL Databases in CommCare

ucr.html
https://plproxy.github.io/

CommCareHQ Documentation, Release 1.0

(continued from previous page)

...
'PLPROXY': {

'PROXY': True
}

},
'p1': {

...
'PLPROXY': {

'SHARDS': [0, 511]
}

},
'p2': {

...
'PLPROXY': {

'SHARDS': [512, 1023]
}

}
}

62.4.1 Rules for shards

• There can only DB with PROXY=True

• The total number of shards must be a power of 2 i.e. 2, 4, 8, 16, 32 etc

• The number of shards cannot be changed once you have data in them so it is wise to start with a large enough
number e.g. 1024

• The shard ranges must start at 0

• The shard ranges are inclusive

– [0, 3] -> [0, 1, 2, 3]

• The shard ranges must be continuous (no gaps)

62.5 Sending read queries to standby databases

By including details for standby databases in the Django DATABASES setting we can configure CommCare to route
certain READ queries to them.

Standby databases are configured in the same way as normal databases but may have an additional property group,
STANDBY. This property group has the following sup-properties:

MASTER
The DB alias of the master database for this standby. This must refer to a database in the DATABASES setting.

ACCEPTABLE_REPLICATION_DELAY
The value of this must be an integer and configures the acceptable replication delay in seconds between the
standby and the master. If the replication delay goes above this value then queries will not be routed to this
database.

The default value for ACCEPTABLE_REPLICATION_DELAY is 3 seconds.

62.5. Sending read queries to standby databases 387

CommCareHQ Documentation, Release 1.0

DATABASES = {
'default': {...}
'standby1': {

...
'STANDBY': {

'MASTER': 'default',
'ACCEPTABLE_REPLICATION_DELAY': 30,

}
}

}

Once the standby databases are configured in the DATABASES settings there are two additional settings that control
which queries get routed to them.

REPORTING_DATABASES
The REPORTING_DATABASES setting can be updated as follows:

REPORTING_DATABASES = {
'default': 'default',
'ucr': {

'WRITE': 'ucr',
'READ': [

('ucr', 1),
('ucr_standby1', 2),
('ucr_standby2', 2),

]
}

}

The tuples listed under the ‘READ’ key specify a database alias (must be in DATABASES) and weighting. In the
configuration above 20% of reads will be sent to ucr and 40% each to ucr_standby1 and ucr_standby2 (assuming both
of them are available and have replication delay within range).

LOAD_BALANCED_APPS
This setting is used to route read queries from Django models.

LOAD_BALANCED_APPS = {
'users': {

'WRITE': 'default',
'READ': [

('default', 1),
('standby1', 4),

]
}

}

In the configuration above all write queries from models in the users app will go to the default database as well as 20%
or read queries. The remaining 80% of read queries will be sent to the standby1 database.

For both the settings above, the following rules apply to the databases listed under READ:

• There can only be one master database (not a standby database)

• All standby databases must point to the same master database

• If a master database is in this list, all standbys must point to this master

388 Chapter 62. Configuring SQL Databases in CommCare

CommCareHQ Documentation, Release 1.0

62.5.1 Using standbys with the plproxy cluster

The plproxy cluster needs some special attention since the queries are routed by plproxy and not by Django. In order
to do this routing there are a number of additional pieces that are needed:

1. Separate plproxy cluster configuration which points the shards to the appropriate standby node instead of the primary
node. 2. Duplicate SQL functions that make use of this new plproxy cluster.

In order to maintain the SQL function naming the new plproxy cluster must be in a separate database.

Example usage

this will connect to the shard standby node directly
case = CommCareCase.objects.partitioned_get(case_id)

this will call the `get_cases_by_id` function on the 'standby' proxy which in turn
will query the shard standby nodes
cases = CommCareCase.objects.get_cases(case_ids, domain)

These examples assume the standby routing is active as described in the Routing queries to standbys section below.

Steps to setup
1. Add all the standby shard databases to the Django DATABASES setting as described above.

2. Create a new database for the standby plproxy cluster configuration and SQL accessor functions and add it to
DATABASES as shown below:

DATABASES = {
'proxy_standby': {

...
(continues on next page)

62.5. Sending read queries to standby databases 389

CommCareHQ Documentation, Release 1.0

(continued from previous page)

'PLPROXY': {
'PROXY_FOR_STANDBYS': True

}
}

}

3. Run the configure_pl_proxy_cluster management command to create the config on the ‘standby’ database.

4. Run the Django migrations to create the tables and SQL functions in the new standby proxy database.

Routing queries to standbys

The configuration above makes it possible to use the standby databases however in order to actually route queries to
them the DB router must be told to do so. This can be done it one of two ways:

1. Via an environment variable

export READ_FROM_PLPROXY_STANDBYS=1

This will route ALL read queries to the shard standbys. This is mostly useful when running a process like pillowtop
that does is asynchronous.

2. Via a Django decorator / context manager

context manager
with read_from_plproxy_standbys():

case = CommCareCase.objects.partitioned_get(case_id)

decorator
@read_from_plproxy_standbys()
def get_case_from_standby(case_id)

return CommCareCase.objects.partitioned_get(case_id)

390 Chapter 62. Configuring SQL Databases in CommCare

CHAPTER

SIXTYTHREE

METRICS

63.1 CommCare Infrastructure Metrics

CommCare uses Datadog and Prometheus for monitoring various system, application and custom metrics. Datadog
supports a variety of applications and is easily extendable.

Below are a few tables tabulating various metrics of the system and service infrastructure used to run CommCare. The
list is not absolute nor exhaustive, but it will provide you with a basis for monitoring the following aspects of your
system:

• Performance

• Throughput

• Utilization

• Availability

• Errors

• Saturation

Each table has the following format:

Met-
ric

Metric type Why care User impact How to measure

Name
of
met-
ric

Category or
aspect of sys-
tem the metric
speaks to

Brief de-
scription of
why metric is
important

Explains the im-
pact on user if
undesired reading
is recorded

A note on how the metric might be obtained.
Please note that it is assumed that Datadog will
be used as a monitoring solution unless specified
otherwise.

63.1.1 General Host

The Datadog Agent ships with an integration which can be used to collect metrics from your base system. See the
System Integration for more information.

391

https://dimagi.github.io/commcare-cloud/monitoring/setup_datadog.html
https://prometeus.io/
https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/system/

CommCareHQ Documentation, Release 1.0

Metric Metric type Why care User impact How to measure
CPU usage (%) Utilization Monitoring server

CPU usage helps
you understand how
much your CPU
is being used, as
a very high load
might result in
overall performance
degradation.

Lagging experience

system.cpu.idle
system.cpu.system
system.cpu.iowait
system.cpu.user

Load averages 1-5-
15

Utilization Load average (CPU
demand) over 1
min, 5 min and 15
min which includes
the sum of running
and waiting threads.
What is load average

User might ex-
perience trouble
connecting to the
server

system.load.1
system.load.5
system.load.15

Memory Utilization It shows the amount
of memory used
over time. Running
out of memory
may result in killed
processes or more
swap memory used,
which will slow
down your system.
Consider optimizing
processes or in-
creasing resources.

Slow performance

system.mem.usable
system.mem.total

Swap memory Utilization This metric shows
the amount of swap
memory used. Swap
memory is slow, so
if your system de-
pends too much on
swap, you should in-
vestigate why RAM
usage is so high.
Note that it is normal
for systems to use
a little swap mem-
ory even if RAM is
available.

Server unrespon-
siveness

system.swap.free
system.swap.used

Disk usage Utilization Disk usage is impor-
tant to prevent data
loss in the event that
the disk runs out of
available space.

Data loss system.disk.in_use

Disk latency Throughput The average time
for I/O requests
issued to the device
to be served. This
includes the time
spent by the requests
in queue and the
time spent servicing
them. High disk
latency will result
in slow response
times for things like
reports, app installs
and other services
that read from disk.

Slow performance system.io.await

Network traffic Throughput This indicates the
amount of incoming
and outgoing traffic
on the network.
This metric is a
good gauge on the
average network
activity on the
system. Low or con-
sistently plateauing
network through-
put will result in
poor performance
experienced by end
users, as sending
and receiving data
from them will be
throttled.

Slow performance

system.net.bytes_rcvd

system.net.bytes_sent

392 Chapter 63. Metrics

https://www.site24x7.com/blog/load-average-what-is-it-and-whats-the-best-load-average-for-your-linux-servers

CommCareHQ Documentation, Release 1.0

63.1.2 Gunicorn

The Datadog Agent ships with an integration which can be used to collect metrics. See the Gunicorn Integration for
more information.

Metric Met-
ric
type

Why care User impact How
to
mea-
sure

Re-
quests
per
second

Through-
put

This metric shows the rate of requests received. This can be used to give
an indication of how busy the application is. If you’re constantly getting
a high request rate, keep an eye out for bottlenecks on your system.

Slow user
experience
or trouble
accessing
the site.

guni-
corn.requests

Request
dura-
tion

Through-
put

Long request duration times can point to problems in your system / ap-
plication.

Slow expe-
rience and
timeouts

guni-
corn.request.duration.*

Http
status
codes

Per-
for-
mance

A high rate of error codes can either mean your application has faulty
code or some part of your application infrastructure is down.

User might
get errors on
pages

guni-
corn.request.status.*

Busy
vs idle
Guni-
corn
workers

Uti-
liza-
tion

This metric can be used to give an indication of how busy the gunicorn
workers are over time. If most of the workers are busy most of the
time, it might be necessary to start thinking of increasing the number
of workers before users start having trouble accessing your site.

Slow user
experience
or trouble
accessing
the site.

guni-
corn.workers

63.1.3 Nginx

The Datadog Agent ships with an integration which can be used to collect metrics. See the Nginx Integration for more
information.

63.1. CommCare Infrastructure Metrics 393

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/gunicorn/
https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/nginx/?tab=host

CommCareHQ Documentation, Release 1.0

Metric Metric type Why care User impact How to measure
Total requests Throughput This metric indi-

cates the number
of client requests
your server handles.
High rates means
bigger load on the
system.

Slow experience nginx.requests.total

Requests per second Throughput This metric shows
the rate of requests
received. This can
be used to give an
indication of how
busy the applica-
tion is. If you’re
constantly getting
a high request rate,
keep an eye out for
services that might
need additional
resources to perform
optimally.

Slow user expe-
rience or trouble
accessing the site.

ng-
inx.net.request_per_s

Dropped connec-
tions

Errors If NGINX starts
to incrementally
drop connections it
usually indicates a
resource constraint,
such as NGINX’s
worker_connections
limit has been
reached. An inves-
tigation might be in
order.

Users will not be
able to access the
site.

ng-
inx.connections.dropped

Server error rate Error Your server error
rate is equal to
the number of 5xx
errors divided by
the total number
of status codes.
If your error rate
starts to climb over
time, investigation
may be in order. If
it spikes suddenly,
urgent action may be
required, as clients
are likely to report
errors to the end
user.

User might get er-
rors on pages

nginx.server_zone.responses.5xx

nginx.server_zone.responses.total_count

Request time Performance This is the time in
seconds used to
process the request.
Long response
times can point to
problems in your
system / application.

Slow experience and
timeouts

Need to include in
NGINX configura-
tion file

394 Chapter 63. Metrics

https://docs.datadoghq.com/integrations/nginx/?tab=host#log-collection
https://docs.datadoghq.com/integrations/nginx/?tab=host#log-collection
https://docs.datadoghq.com/integrations/nginx/?tab=host#log-collection

CommCareHQ Documentation, Release 1.0

63.1.4 PostgreSQL

PostgreSQL has a statistics collector subsystem that collects and reports on information about the server activity.

The Datadog Agent ships with an integration which can be used to collect metrics. See the PostgreSQL Integration for
more information.

63.1. CommCare Infrastructure Metrics 395

https://www.postgresql.org/docs/12/monitoring-stats.html
https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/postgres/?tab=host

CommCareHQ Documentation, Release 1.0

Metric Metric type Why care User impact How to measure
Sequential scans on
table vs. Index scans
on table

Other This metric speaks
directly to the speed
of query execution.
If the DB is mak-
ing more sequential
scans than indexed
scans you can im-
prove the DB’s per-
formance by creat-
ing an index.

Tasks that require
data to be fetched
from the DB will
take a long time to
execute.

PostgreSQL:

pg_stat_user_tables
Datadog
integration:

postgresql.seq_scans

postgresql.index_scans

Rows fetched vs. re-
turned by queries to
DB

Throughput This metric shows
how effectively the
DB is scanning
through its data. If
many more rows are
constantly fetched
vs returned, it
means there’s room
for optimization.

Slow experience
for tasks that access
large parts of the
database.

PostgreSQL:

pg_stat_database
Datadog
integration:

postgresql.rows_fetched

postgresql.rows_returned

Amount of data
written temporarily
to disk to execute
queries

Saturation If the DB’s tempo-
rary storage is con-
stantly used up, you
might need to in-
crease it in order
to optimize perfor-
mance.

Slow experience for
tasks that read data
from the database.

PostgreSQL:

pg_stat_database
Datadog
integration:

postgresql.temp_bytes

Rows inserted, up-
dated, deleted (by
database)

Throughput This metric gives
an indication of
what type of write
queries your DB
serves most. If a
high rate of updated
or deleted queries
persist, you may
want to keep an eye
out for increasing
dead rows as this
will degrade DB
performance.

No direct impact
PostgreSQL:

pg_stat_database
Datadog
integration:

postgresql.rows_inserted

postgresql.rows_updated

postgresql.rows_deleted

Locks Other A high lock rate
in the DB is an
indication that
queries could be
long-running and
that future queries
might start to time
out.

Slow experience for
tasks that read data
from the database.

PostgreSQL:

pg_locks
Datadog
integration:

postgresql.locks

Deadlocks Other The aim is to have no
deadlocks as it’s re-
source intensive for
the DB to check for
them. Having many
deadlocks calls for
reevaluating execu-
tion logic. Read
more

Slow experience for
tasks that read data
from the database.
Some tasks may
even hang and the
user will get errors
on pages.

PostgreSQL:

pg_stat_database
Datadog
integration:

postgresql.deadlocks

Dead rows Other A constantly in-
creasing number
of dead rows show
that the DB’s VAC-
UUM process is not
working properly.
This will affect
DB performance
negatively.

Slow experience for
tasks that read data
from the database.

PostgreSQL:

pg_stat_user_tables
Datadog
integration:

postgresql.dead_rows

Replication delay Other A higher delay
means data is less
consistent across
replication servers.

In the worst case,
some data may ap-
pear missing.

PostgreSQL:

pg_xlog
Datadog
integration:

postgresql.replication_delay

Number of check-
points requested vs
scheduled

Other Having more re-
quested checkpoints
than scheduled
checkpoints means
decreased writ-
ing performance
for the DB.`Read
more <https://www.
cybertec-postgresql.
com/en/
postgresql-what-is-a-checkpoint/
?gclid=
CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_
BwE>`__

Slow experience for
tasks that read data
from the database.

PostgreSQL:

pg_stat_bgwriter
Datadog
integration:

postgresql.bgwriter.checkpoints_timed

postgresql.bgwriter.checkpoints_requested

Active connections Utilization Having the number
of active connec-
tions consistently
approaching the
number of maxi-
mum connections,
this can indicate
that applications
are issuing long-
running queries and
constantly creating
new connections
to send other re-
quests, instead of
reusing existing
connections. Using
a connection pool
can help ensure
that connections are
consistently reused
as they go idle,
instead of placing
load on the primary
server to frequently
have to open and
close connections.
Typically, opening a
DB connection is an
expensive operation.

Users might get er-
rors on pages which
need to access the
database but cannot
due to too many cur-
rently active connec-
tions.

PostgreSQL:

pg_stat_database
Datadog
integration:

postgresql.connections

postgresql.max_connections

396 Chapter 63. Metrics

https://www.cybertec-postgresql.com/en/postgresql-understanding-deadlocks/
https://www.cybertec-postgresql.com/en/postgresql-understanding-deadlocks/
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE

CommCareHQ Documentation, Release 1.0

63.1.5 Elasticsearch

The Datadog Agent ships with an integration which can be used to collect metrics. See the Elasticsearch Integration
for more information.

63.1. CommCare Infrastructure Metrics 397

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/elastic/?tab=host

CommCareHQ Documentation, Release 1.0

Metric Metric type Why care User impact How to measure
Query load Utilization Monitoring the

number of queries
currently in progress
can give you a rough
idea of how many
requests your cluster
is dealing with
at any particular
moment in time.

A high load might
slow down any tasks
that involve search-
ing users, groups,
forms, cases, apps
etc.

elastic-
search.primaries.search.query.current

Average query
latency

Throughput If this metric shows
the query latency is
increasing it means
your queries are
becoming slower,
meaning either
bottlenecks or
inefficient queries.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elasticsearch.primaries.search.query.total

elasticsearch.primaries.search.query.time

Average fetch
latency

Throughput This should typ-
ically take less
time than the query
phase. If this met-
ric is constantly
increasing it could
indicate problems
with slow disks or
requesting of too
many results.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elasticsearch.primaries.search.fetch.total

elasticsearch.primaries.search.fetch.time

Average index
latency

Throughput If you notice an
increasing latency
it means you may
be trying to in-
dex too many
documents simulta-
neously.Increasing
latency may slow
down user experi-
ence.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elasticsearch.indexing.index.total

elasticsearch.indexing.index.time

Average flush
latency

Throughput Data is only per-
sisted on disk after a
flush. If this metric
increases with time
it may indicate a
problem with a slow
disk. If this problem
escalates it may pre-
vent you from being
able to add new in-
formation to your in-
dex.

Slow user ex-
perience when
generating or re-
ports, filtering
groups or users, etc.
In the worst case
there may be some
data loss.

elasticsearch.primaries.flush.total

elasticsearch.primaries.flush.total.time

Percent of JVM
heap currently in
use

Utilization Garbage collec-
tions should initiate
around 75% of heap
use. When this
value is consistently
going above 75%
it indicates that
the rate of garbage
collection is not
keeping up with the
rate of garbage cre-
ation which might
result in memory
errors down the line.

Users might experi-
ence errors on some
pages

jvm.mem.heap_in_use

Total time spent on
garbage collection

Other The garbage collec-
tion process halts
the node, during
which the node
cannot complete
tasks. If this halting
duration exceeds
the routine status
check (around 30
seconds) the node
might mistakenly be
marked as offline.

Users can have a
slow experience and
in the worst case
might even get er-
rors on some pages.

jvm.gc.collectors.young.collection_time

jvm.gc.collectors.old.collection_time

Total HTTP connec-
tions opened over
time

Other If this number
is constantly in-
creasing it means
that HTTP clients
are not properly
establishing persis-
tent connections.
Reestablishing adds
additional overhead
and might result
in requests taking
unnecessarily long
to complete.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elastic-
search.http.total_opened

Cluster status Other The status will in-
dicate when at least
one replica shard is
unallocated or miss-
ing. If more shards
disappear you may
lose data.

Missing data
(not data loss, as
Elasticsearch is a
secondary database)

elastic-
search.cluster_health

Number of unas-
signed shards

Availability When you first
create an index,
or when a node
is rebooted, its
shards will briefly
be in an “initial-
izing” state before
transitioning to a
status of “started”
or “unassigned”, as
the primary node
attempts to assign
shards to nodes in
the cluster. If you
see shards remain
in an initializing
or unassigned state
too long, it could
be a warning sign
that your cluster is
unstable.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elastic-
search.unassigned_shards

Thread pool queues Large queues are not
ideal because they
use up resources and
also increase the risk
of losing requests if
a node goes down.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc. In the
worst case

elastic-
search.thread_pool.bulk.queue

Pending tasks Saturation The number of
pending tasks is a
good indication of
how smoothly your
cluster is operating.
If your primary
node is very busy
and the number
of pending tasks
doesn’t subside,
it can lead to an
unstable cluster.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elastic-
search.pending_tasks_total

Unsuccessful GET
requests

Error An unsuccessful get
request means that
the document ID
was not found. You
shouldn’t usually
have a problem with
this type of request,
but it may be a good
idea to keep an eye
out for unsuccessful
GET requests when
they happen.

User might get er-
rors on some pages

elastic-
search.get.missing.total

398 Chapter 63. Metrics

CommCareHQ Documentation, Release 1.0

63.1.6 CouchDB

The Datadog Agent ships with an integration which can be used to collect metrics. See the CouchDB Integration for
more information.

Metric Met-
ric
type

Why care User impact How to
measure

Open
databases

Avail-
abil-
ity

If the number of open databases are too low you might have
database requests starting to pile up.

Slow user
experience if
the requests
start to pile up
high.

couchdb.couchdb.open_databases

File de-
scriptors

Uti-
liza-
tion

If this number reaches the max number of available file de-
scriptors, no new connections can be opened until older ones
have closed.

The user
might get er-
rors on some
pages.

couchdb.couchdb.open_os_files
over

Data size Uti-
liza-
tion

This indicates the relative size of your data. Keep an eye on
this as it grows to make sure your system has enough disk space
to support it.

Data loss couchdb.by_db.file_size

HTTP Re-
quest Rate

Through-
put

Gives an indication of how many requests are being served. Slow perfor-
mance

couchdb.couchdb.httpd.requests

Request
with sta-
tus code
of 2xx

Per-
for-
mance

Statuses in the 2xx range are generally indications of success-
ful operation.

No negative
impact

couchdb.couchdb.httpd_status_codes

Request
with sta-
tus code
of 4xx
and 5xx

Per-
for-
mance

Statuses in the 4xx and 5xx ranges generally tell you something
is wrong, so you want this number as low as possible, prefer-
ably zero. However, if you constantly see requests yielding
these statuses, it might be worth looking into the matter.

Users might
get errors on
some pages.

couchdb.couchdb.httpd_status_codes

Workload
- Reads &
Writes

Per-
for-
mance

These numbers will depend on the application, but having this
metric gives an indication of how busy the database generally
is. In the case of a high workload, consider ramping up the
resources.

Slow perfor-
mance

couchdb.couchdb.database_reads

Average
request
latency

Through-
put

If the average request latency is rising it means somewhere
exists a bottleneck that needs to be addressed.

Slow perfor-
mance

couchdb.couchdb.request_time.arithmetic_mean

Cache hits Other CouchDB stores a fair amount of user credentials in memory
to speed up the authentication process. Monitoring usage of
the authentication cache can alert you for possible attempts to
gain unauthorized access.

A low number
of hits might
mean slower
performance

couchdb.couchdb.auth_cache_hits

Cache
misses

Er-
ror

If CouchDB reports a high number of cache misses, then either
the cache is undersized to service the volume of legitimate user
requests, or a brute force password/username attack is taking
place.

Slow perfor-
mance

couchdb.couchdb.auth_cache_misses

63.1. CommCare Infrastructure Metrics 399

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/couch/?tab=host#pagetitle

CommCareHQ Documentation, Release 1.0

63.1.7 Kafka

The Datadog Agent ships with a Kafka Integration to collect various Kafka metrics. Also see Integrating Datadog,
Kafka and Zookeper.

400 Chapter 63. Metrics

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/kafka/?tab=host
https://www.datadoghq.com/blog/monitor-kafka-with-datadog/#integrating-datadog-kafka-and-zookeeper
https://www.datadoghq.com/blog/monitor-kafka-with-datadog/#integrating-datadog-kafka-and-zookeeper

CommCareHQ Documentation, Release 1.0

Broker Metrics

Metric Metric type Why care User impact How to measure
UnderReplicated-
Partitions

Availability If a broker be-
comes unavail-
able, the value of
UnderReplicat-
edPartitions will
increase sharply.
Since Kafka’s
high-availability
guarantees cannot
be met without
replication, investi-
gation is certainly
warranted should
this metric value
exceed zero for
extended time
periods.

Fewer in-sync
replicas means the
reports might take
longer to show the
latest values.

kafka.replication.under_replicated_partitions

IsrShrinksPerSec Availability The rate at which
the in-sync repli-
cas shrinks for a
particular partition.
This value should
remain fairly static.
You should inves-
tigate any flapping
in the values of
these metrics, and
any increase in
IsrShrinksPerSec
without a corre-
sponding increase in
IsrExpandsPerSec
shortly thereafter.

As the in-sync repli-
cas become fewer,
the reports might
take longer to show
the latest values.

kafka.replication.isr_shrinks.rate

IsrExpandsPerSec Availability The rate at which the
in-sync replicas ex-
pands.

As the in-sync repli-
cas become fewer,
the reports might
take longer to show
the latest values.

kafka.replication.isr_expands.rate

TotalTimeMs Performance This metrics reports
on the total time
taken to service a
request.

Longer servicing
times mean data-
updates take longer
to propagate to the
reports.

kafka.request.produce.time.avg

kafka.request.consumer.time.avg

kafka.request.fetch_follower.time.avg

ActiveController-
Count

Error The first node to
boot in a Kafka clus-
ter automatically
becomes the con-
troller, and there can
be only one. You
should alert on any
other value that lasts
for longer than one
second. In the case
that no controller is
found, Kafka might
become unstable
and new data might
not be updated.

Reports might not
show new updated
data, or even break. kafka.replication.active_controller_count

Broker network
throughput

Throughput This metric indi-
cates the broker
throughput.

If the throughput be-
comes less, the user
might find that re-
ports take longer to
reflect updated data.

kafka.net.bytes_in.rate

kafka.net.bytes_out.rate

Clean vs unclean
leaders elections

Error When a partition
leader dies, an elec-
tion for a new leader
is triggered. New
leaders should only
come from replicas
that are in-sync with
the previous leader,
however, this is a
configuration setting
that can allow for
unclean elections.

Data might be
missing in reports.
(the data will not
be lost, as the data
is already stored
in PostgreSQL or
CouchDB, but the
reports will not
reflect the latest
changes)

kafka.replication.leader_elections.rate

kafka.replication.unclean_leader_elections.rate

Fetch/request purga-
tory

Other An unclean leader is
a leader that is not
completely in-sync
with the previous
leader, so when an
unclean leader is
elected, you will
lose any data that
was produced to
Kafka before the
full sync happened.
You should alert on
any unclean leaders
elected.

Reports might take
longer to reflect the
latest data. kafka.request.producer_request_purgatory.size

kafka.request.fetch_request_purgatory.size

63.1. CommCare Infrastructure Metrics 401

CommCareHQ Documentation, Release 1.0

Producer Metrics

Met-
ric

Met-
ric
type

Why care User impact How to
mea-
sure

Re-
quest
rate

Through-
put

The request rate is the rate at which producers send
data to brokers. Keeping an eye on peaks and drops is
essential to ensure continuous service availability.

Reports might take longer to
reflect the latest data.

kafka.producer.request_rate

Re-
sponse
rate

Through-
put

Average number of responses received per second
from the brokers after the producers sent the data to
the brokers.

Reports might take longer to
reflect the latest data.

kafka.producer.response_rate

Re-
quest
la-
tency
aver-
age

Through-
put

Average request latency (in ms). Read more Reports might take longer to
reflect the latest data.

kafka.producer.request_latency_avg

Out-
going
byte
rate

Through-
put

Monitoring producer network traffic will help to in-
form decisions on infrastructure changes, as well as to
provide a window into the production rate of produc-
ers and identify sources of excessive traffic.

High network throughput
might cause reports to take a
longer time to reflect the latest
data, as Kafka is under heavier
load.

kafka.net.bytes_out.rate

Batch
size
aver-
age

Through-
put

To use network resources more efficiently, Kafka pro-
ducers attempt to group messages into batches before
sending them. The producer will wait to accumulate
an amount of data defined by the batch size. Read
more

If the batch size average is
too low, reports might take a
longer time to reflect the latest
data.

kafka.producer.batch_size_avg

402 Chapter 63. Metrics

https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics/#metric-to-watch-request-latency-average
https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics/#metric-to-watch-batch-size
https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics/#metric-to-watch-batch-size

CommCareHQ Documentation, Release 1.0

Consumer Metrics

Met-
ric

Met-
ric
type

Why care User
impact

How
to
mea-
sure

Records
lag

Per-
for-
mance

Number of messages consumers are behind producers on this partition. The sig-
nificance of these metrics’ values depends completely upon what your consumers
are doing. If you have consumers that back up old messages to long-term storage,
you would expect records lag to be significant. However, if your consumers are pro-
cessing real-time data, consistently high lag values could be a sign of overloaded
consumers, in which case both provisioning more consumers and splitting topics
across more partitions could help increase throughput and reduce lag.

Re-
ports
might
take
longer
to
reflect
the
latest
data.

kafka.consumer_lag

Records
con-
sumed
rate

Through-
put

Average number of records consumed per second for a specific topic or across all
topics.

Re-
ports
might
take
longer
to
reflect
the
latest
data.

kafka.consumer.records_consumed

Fetch
rate

Through-
put

Number of fetch requests per second from the consumer. re-
quests
per
second
from
the
con-
sumer.

kafka.request.fetch_rate

63.1.8 Zookeeper

The Datadog Agent ships with an integration which can be used to collect metrics. See the Zookeeper Integration for
more information.

63.1. CommCare Infrastructure Metrics 403

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/zk/?tab=host

CommCareHQ Documentation, Release 1.0

Met-
ric

Met-
ric
type

Why care User impact How to
measure

Out-
stand-
ing
re-
quests

Sat-
u-
ra-
tion

This shows the number of requests still to be processed.
Tracking both outstanding requests and latency can give
you a clearer picture of the causes behind degraded per-
formance.

Reports might take
longer to reflect the
latest data.

zookeeper.outstanding_requests

Av-
erage
la-
tency

Through-
put

This metric records the amount of time it takes to respond
to a client request (in ms).

Reports might take
longer to reflect the
latest data.

zookeeper.latency.avg

Open
file
de-
scrip-
tors

Uti-
liza-
tion

Linux has a limited number of file descriptors available,
so it’s important to keep an eye on this metric to ensure
ZooKeeper can continue to function as expected.

Reports might not
reflect new data, as
ZooKeeper will be
getting errors.

zookeeper.open_file_descriptor_count

63.1.9 Celery

The Datadog Agent ships with a HTTP Check integration to collect various network metrics. In addition, CommCare
HQ reports on many custom metrics for Celery. It might be worth having a look at Datadog’s Custom Metrics page.
Celery also uses Celery Flower as a tool to monitor some tasks and workers.

404 Chapter 63. Metrics

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/http_check/#metrics
https://flower.readthedocs.io/en/latest/

CommCareHQ Documentation, Release 1.0

Met-
ric

Met-
ric
type

Why care User impact How
to
mea-
sure

Cel-
ery
up-
time

Avail-
abil-
ity

The uptime rating is a measure of service availability. Background tasks will not exe-
cute (sending of emails, periodic
reporting to external partners, re-
port downloads, etc)

net-
work.http.can_connect

Cel-
ery
up-
time
by
queue

Avail-
abil-
ity

The uptime rating as per queue. Certain background or asyn-
chronous tasks will not get exe-
cuted. The user might not notice
this immediately.

Comm-
Care
HQ
cus-
tom
met-
ric

Time
to
start

Other This metric shows the time (seconds) it takes a task
in a specific queue to start executing. If a certain task
consistently takes a long time to start, it might be worth
looking into.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Block-
age
dura-
tion
by
queue

Through-
put

This metric indicates the estimated time (seconds) a
certain queue was blocked. It might be worth it to alert
if this blockage lasts longer than a specified time.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Task
exe-
cu-
tion
rate

Through-
put

This metric gives a rough estimation of the amount
of tasks being executed within a certain time bracket.
This can be an important metric as it will indicate when
more and more tasks take longer to execute, in which
case an investigation might be appropriate.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Cel-
ery
tasks
by
host

Through-
put

Indicates the running time (seconds) for celery tasks
by host.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Cel-
ery
tasks
by
queue

Through-
put

Indicates the running time (seconds) for celery tasks
by queue. This way you can identify slower queues.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Cel-
ery
tasks
by
task

Through-
put

Indicates the running time (seconds) for celery tasks
by each respective task. Slower tasks can be identified.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Tasks
queued
by
queue

Sat-
u-
ra-
tion

Indicates the number of tasks queued by each respec-
tive queue. If this becomes increasingly large, keep an
eye out for blockages.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Cel-
ery
Flower

Tasks
fail-
ing
by
worker

Er-
ror

Indicates tasks that failed to execute. Increasing
numbers indicates some problems with the respective
worker(s).

If certain background or asyn-
chronous tasks fail, certain fea-
tures become unusable, for ex-
ample sending emails, SMS’s,
periodic reporting etc.

Cel-
ery
Flower

Tasks
by
state

Other This metric shows the number of tasks by their celery
state. If the number of failed tasks increases for in-
stance, it might be worth looking into.

If certain background or asyn-
chronous tasks fail, certain fea-
tures become unusable, for ex-
ample sending emails, SMS’s,
periodic reporting etc.

Cel-
ery
Flower

63.1. CommCare Infrastructure Metrics 405

https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/

CommCareHQ Documentation, Release 1.0

63.1.10 RabbitMQ

The Datadog Agent ships with an integration which can be used to collect metrics. See the RabbitMQ Integration for
more information.

Met-
ric

Met-
ric
type

Why care User impact How to
mea-
sure

Queue
depth

Sat-
u-
ra-
tion

Using queue depth, messages ready and messages unac-
knowledged

For the most part this might
go unnoticed for the user,
but there will be a delay
in the execution of back-
ground tasks, like sending
emails, SMS’s, alerts, etc.

rab-
bitmq.queue.messages

Mes-
sages
ready

Other Using queue depth, messages ready and messages unac-
knowledged

For the most part this might
go unnoticed for the user,
but there will be a delay
in the execution of back-
ground tasks, like sending
emails, SMS’s, alerts, etc.

rab-
bitmq.queue.messages_ready

Mes-
sages
un-
ac-
knowl-
edged

Er-
ror

Using queue depth, messages ready and messages unac-
knowledged

Certain background tasks
will fail to execute, like
sending emails, SMS’s,
alerts, etc.

rab-
bitmq.queue.messages_unacknowledged

Queue
mem-
ory

Uti-
liza-
tion

RabbitMQ keeps messages in memory for faster access, but
if queues handle a lot of messages you could consider using
lazy queues in order to preserve memory. Read more

For the most part this might
go unnoticed for the user,
but there will be a delay
in the execution of back-
ground tasks, like sending
emails, SMS’s, alerts, etc.

rab-
bitmq.queue.memory

Queue
con-
sumers

Other The number of consumers is configurable, so a lower-than-
expected number of consumers could indicate failures in
your application.

Certain background tasks
might fail to execute, like
sending emails, SMS’s,
alerts, etc.

rab-
bitmq.queue.consumers

Node
sock-
ets

Uti-
liza-
tion

As you increase the number of connections to your Rab-
bitMQ server, RabbitMQ uses a greater number of file de-
scriptors and network sockets. Since RabbitMQ will block
new connections for nodes that have reached their file de-
scriptor limit, monitoring the available number of file de-
scriptors helps you keep your system running.

Background tasks might
take longer to execute as, or
in the worst case, might not
execute at all.

rab-
bitmq.node.sockets_used

Node
file
de-
scrip-
tors

Uti-
liza-
tion

As you increase the number of connections to your Rab-
bitMQ server, RabbitMQ uses a greater number of file de-
scriptors and network sockets. Since RabbitMQ will block
new connections for nodes that have reached their file de-
scriptor limit, monitoring the available number of file de-
scriptors helps you keep your system running.

Background tasks might
take longer to execute as, or
in the worst case, might not
execute at all.

rab-
bitmq.node.fd_used

406 Chapter 63. Metrics

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/rabbitmq/?tab=host
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.rabbitmq.com/lazy-queues.html

CHAPTER

SIXTYFOUR

COMMCARE EXTENSIONS

This document describes the mechanisms that can be used to extend CommCare’s functionality. There are a number
of legacy mechanisms that are used which are not described in this document. This document will focus on the use of
pre-defined extension points to add functionality to CommCare.

64.1 Where to put custom code

The custom code for extending CommCare may be part of the main commcare-hq repository or it may have its own
repository. In the case where it is in a separate repository the code may be ‘added’ to CommCare by cloning the custom
repository into the extensions folder in the root of the CommCare source:

/commcare-hq
/corehq
/custom
...
/extensions
/custom_repo
/custom_app1/models.py
/custom_app2/models.py

64.2 Extensions Points

The corehq/extensions package provides the utilities to register extension points and their implementations and to
retrieve the results from all the registered implementations.

64.2.1 Create an extension point

from corehq import extensions

@extensions.extension_point
def get_things(arg1: int, domain: str, keyword: bool = False) -> List[str]:

'''Docs for the extension point'''
pass

@extensions.extension_point
(continues on next page)

407

CommCareHQ Documentation, Release 1.0

(continued from previous page)

def get_other_things():
'''Default implementation of ``get_other_things``. May be overridden by an extension'''
return ["default1", "default2"]

The extension point function is called if there are no registered extensions or none that match
the call args.

64.2.2 Registering an extension point implementation

Registering an extension point implementation is as simple as creating a function with the same signature as the exten-
sion point and adding a decorator to the function.

To guarantee that the extension point implementation is registered during startup you should also add the module path
to the COMMCARE_EXTENSIONS list in settings.

The convention is to name your module commcare_extensions and place it in the root package of your Django app.

in path/to/myapp/commcare_extensions.py

from xyz import get_things

@get_things.extend()
def some_things(arg1, domain, keyword=False):

return ["thing2", "thing1"]

in localsettings.py
COMMCARE_EXTENSIONS = ["custom.myapp.commcare_extensions"]

Extensions may also be limited to specific domains by passing the list of domains as a keyword argument (it must be a
keyword argument). This is only supported if the extension point defines a domain argument.

from xyz import get_things

@get_things.extend(domains=["cat", "hat"])
def custom_domain_things(arg1, domain, keyword=False):

return ["thing3", "thing4"]

64.2.3 Calling an extension point

An extension point is called as a normal function. Results are returned as a list with any None values removed.

from xyz import get_things

results = get_things(10, "seuss", True)

408 Chapter 64. CommCare Extensions

CommCareHQ Documentation, Release 1.0

Formatting results

By default the results from calling an extension point are returned as a list where each element is the result from each
implementation:

> get_things(10, "seuss", True)
[["thing2", "thing1"], ["thing3", "thing4"]]

Results can also be converted to a flattened list or a single value by passing a ResultFormat enum when defining the
extension point.

Flatten Results

@extensions.extension_point(result_format=ResultFormat.FLATTEN)
def get_things(...):

pass

> get_things(...)
["thing2", "thing1", "thing3", "thing4"]

First Result
This will return the first result that is not None. This will only call the extension point implementations until a value is
found.

@extensions.extension_point(result_format=ResultFormat.FIRST)
def get_things(...):

pass

> get_things(...)
["thing2", "thing1"]

64.2. Extensions Points 409

CommCareHQ Documentation, Release 1.0

410 Chapter 64. CommCare Extensions

CHAPTER

SIXTYFIVE

LIST EXTENSION POINTS

You can list existing extension points and their implementations by running the following management command:

python manage.py list_extension_points

411

CommCareHQ Documentation, Release 1.0

412 Chapter 65. List Extension Points

CHAPTER

SIXTYSIX

CUSTOM MODULES

CommCare HQ includes some code written for specific projects.

Most of this consists of custom reports or customized messaging logic.

66.1 COVID: Available Actions

The following actions can be used in messaging in projects using the covid custom module.

custom.covid.rules.custom_actions.close_cases_assigned_to_checkin(checkin_case, rule)
For any associated checkin case that matches the rule criteria, the following occurs:

1. For all cases of a given type, find all assigned cases. An assigned case is a case for which all of the following
are true:

• Case type patient or contact

• Exists in the same domain as the user case

• The case property assigned_to_primary_checkin_case_id equals an associated checkin case’s case_id

2. For every assigned case, the following case properties are blanked out (set to “”):

• assigned_to_primary_checkin_case_id

• is_assigned_primary

• assigned_to_primary_name

• assigned_to_primary_username

custom.covid.rules.custom_actions.set_all_activity_complete_date_to_today(case, rule)
For any case matching the criteria, set the all_activity_complete_date property to today’s date, in YYYY-MM-
DD format, based on the domain’s default time zone.

66.2 COVID: Available Criteria

The following criteria can be used in messaging in projects using the covid custom module.

custom.covid.rules.custom_criteria.associated_usercase_closed(case, now)
Is this an open checkin case where the associated usercase has been closed?

413

CommCareHQ Documentation, Release 1.0

414 Chapter 66. Custom Modules

CHAPTER

SIXTYSEVEN

MIGRATIONS IN PRACTICE

67.1 Background

67.1.1 Definitions

Schema migration - Modifies the database schema, say by adding a new column or changing properties of an existing
column. Usually pretty fast but can get complicated if not backwards-compatible.

Data migration - Modifies data already in the database. This has the potential to be quite slow

Django migration - A migration (either kind) that is run automatically on deploy by ./manage.py migrate. These
are in files like corehq/apps/<app>/migrations/0001_my_migration.py

Management command - Some data migrations are written as management commands. These are then run either
manually via a commcare-cloud command or automatically from inside a django migration using call_command.
These are in files like corehq/apps/<app>/management/commands/my_command.py

Private release - If you need to run code from a branch that’s not currently deployed, use a private release.

67.1.2 General Principles

Don’t block deploys - If you write a migration that will take more than 15 minutes to run on any server (typically
production will have the most data and therefore be the slowest), take care to run it outside of a deploy, otherwise that
deploy will hang. How do you know if your migration will take too long? Run it on staging and compare the amount
of data on staging to the amount of data on prod to estimate. If in any kind of doubt, err on the side of caution. In
practice, any migration that touches common models - users, apps, domains - will need to be run outside of a deploy,
while migrations to tiny tables (thousands of rows) or flagged features with few users may be able to run in a deploy.

Deploys are not instantaneous - Deploys will push new code, run the migrations in that new code, and then switch
the servers to the new code. The site will be active this whole time. Users or tasks can add or modify data after the
start of the migration and before the code switch and you need to account for that.

All migration states should be valid - Similar to the above, you must consider the states before, during, and after the
migration. Will the active code handle all three states correctly?

Master should always be deployable - If you have a PR with a migration that requires manual handling, don’t merge
it until you are prepared to handle it.

Remember third parties - We’ll often manage migrations manually for at least prod and india, but third parties run
environments that we can’t manage directly. Be sure that whatever changes are necessary will be applied automatically
on these environments, though it will likely require running data migrations during deploy. If the change may be
disruptive or requires manual handling, we’ll need to communicate it out in advance.

415

https://github.com/dimagi/commcare-cloud/blob/master/src/commcare_cloud/fab/README.md#private-releases
https://confluence.dimagi.com/display/saas/Announcing+changes+affecting+third+parties

CommCareHQ Documentation, Release 1.0

67.1.3 Practical Considerations

Handling new data - There’s likely a code change that writes to the database in the new way going forward. It cannot
be deployed until any requisite schema changes have been implemented.

Migrating old data - This will be handled via a django migration, a management command, or both. Typically,
small/simple migrations are handled by a django migration and large/complex ones use a django migration that runs a
management command. It cannot run until any schema changes are deployed.

Dealing with the gap - We generally can’t pause the servers, put everything to rights, then restart. Rather, we must
ensure that we’re saving new data properly before migrating old data, or otherwise ensure that all data from before,
during, and after the migration is handled correctly.

Backwards-incompatible changes - These are best avoided. A common workaround is to treat it as two migrations -
one to store the data (in duplicate, with any necessary syncing code) the new way, then a later migration to remove the
old way from the schema. With couchdb, this is a little easier, since you don’t need to remove the old schema once all
the data is migrated.

Idempotence and resumability - If at all possible, you should design your management command to be run multiple
times without changing the result, breaking, or redoing work. This means it should expect that some data in the db
might already be migrated, and only operate on unmigrated data. This should happen performantly. This will help with
some of the below migration strategies and make dealing with unexpected failures much smoother.

Shim code for the transition - Another useful pattern in some circumstances is to write short-lived code that can deal
with both versions of the data in the db. This can make the transition much easier. One example of this is overriding
the wrap method on a couch Document. Be sure to make a clean-up PR that drops support for the old version to be
merged later once it’s no longer needed.

Migration-dependent code - This is the reason the migration is being performed. You need to make sure all data is
migrated before code depending on it is released.

Testing - Complex migrations can justify unit tests. These tests are often short-lived, but they can protect against
highly disruptive and lengthy data cleanup caused by a bug. With migrations, plan for the worst. Example tests for a
management command.

Staging - Prod data is usually much more complex than what you have locally or what you might write for test cases.
Before running your migration on prod, run it on staging. However, this can cause issues if you need to change your
migration later, or if another migration in the same app conflicts with yours. Be sure to leave staging in a good state.

67.2 Example Migration: User Logging

Let’s speak about this a bit more concretely with a specific example migration in mind. This is based on a real example,
but I’ve idealized it somewhat here for illustration. Here’s a brief description of a migration which will be referred
back to throughout this document.

We log all changes to users, keeping track of who changed what. We currently store the ID of the affected user, but
now we want to store the username too. This means we’ll need to make the following four changes:

1. Schema migration: Add a new user_repr field to the log model to hold the username

2. Data migration: Populate that field for all existing log rows

a. If this will be run multiple times (more on that below), it should be idempotent and resumable.

i. Resumability: Rather than update all user changelogs, it should filter out those that already have
user_repr set, so subsequent runs can be much much faster.

ii. Idempotence: Running the command multiple times should behave the same as if it were run only once.
For example, the command shouldn’t error if it encounters an already migrated log. It also shouldn’t

416 Chapter 67. Migrations in Practice

https://github.com/dimagi/commcare-hq/blob/45b9c9040e72ebfc0058f209e2d3f99b8dfd6d16/custom/covid/tests/test_management_commands.py#L42-L107
https://github.com/dimagi/commcare-hq/blob/master/custom/covid/management/commands/add_hq_user_id_to_case.py
https://github.com/dimagi/commcare-hq/pull/30769

CommCareHQ Documentation, Release 1.0

apply a modification where unnecessary, like if the migration appended the user_repr to a string,
then running it twice might result in something like "user@example.comuser@example.com"

3. Handle new data: Modify the logging code to populate the user_repr field going forward.

4. Migration-dependent code: Update the UI to display the user_repr and make it filterable. We can’t turn this
on until all existing logs have user_repr set, or at least they’ll need to anticipate that some rows will be missing
that field.

Because this example exclusively adds new data, there’s no cleanup step. Some migrations will need to remove an
“old” way of doing things, which is frequently done in an additional PR. For low-risk, simple, single-PR migrations,
cleanup might be included in the single PR.

67.3 Common types of migrations

67.3.1 Simple

If you’re adding a new model or field in postgres that doesn’t need to be back-populated, you can just put the schema
migration in the same PR as the associated code changes, and the deploy will apply that migration before the new code
goes live. In couch, this type of change doesn’t require a migration at all.

User Logging Example

A “simple” migration would not be suitable for the example user logging migration described above. If you tried to
make all those changes in a single PR and let it get deployed as-is, you risk missing data. During deploy, the data
migration will be run before the code handling new data properly goes live. Any users modified in this period would
not have the user_repr populated. Additionally, the migration might take quite a while to run, which would block the
deploy.

67.3.2 Multiple deploys

This is the most robust approach, and is advocated for in the couch-to-sql pattern. You make two PRs:

• PR 1: Schema migration; handle new data correctly; data migration management command

• PR 2: Django migration calling the management command; actual code relying on the migration

After the first PR is deployed, you can run the migration in a management command on whatever schedule is appropriate.
The Django migration in the second PR calls the command again so we can be sure it’s been run at least once on every
environment. On production, where the command has been run manually already, this second run should see that there
are no remaining unmigrated rows/documents in the db and be nearly a noop.

Although using two deploys eliminates the risk of an indeterminate state on environments that you control, this risk is
still present for third party environments. If the third party doesn’t deploy often and ends up deploying the two PRs
together, there’s still a risk of changes happening in the gap between the migration and the new code going live. The
magnitude of this risk depends on the functionality being migrated - how much data it touches and how frequently it
is used. If necessary, you can mitigate this risk by spacing the deploys so that third parties are likely to deploy them
separately. See guidelines for third parties running CommCare.

67.3. Common types of migrations 417

https://commcare-hq.readthedocs.io/couch_to_sql_models.html
https://github.com/dimagi/commcare-cloud/blob/master/docs/system/maintenance-expectations.md#expectations-for-ongoing-maintenance

CommCareHQ Documentation, Release 1.0

User Logging Example

Splitting the example user logging migration across two deploys would be a good way to ensure everything is handled
correctly. You’d split the changes into two PRs as described above and deploy them separately. The steps would be:

1. First PR deployed: Now we have the schema change live, and all new changes to users have the user_repr
field populated. Additionally, the management command is available for use.

2. Run the management command: This can be done in a private release any time before the second deploy.
This should almost certainly be done on prod. Whether or not it needs to be done on the other Dimagi-managed
environments (india, swiss) depends on how much data those environments have.

3. Second PR deployed: This will run the management command again, but since all logs have already been
migrated, it won’t actually make any changes and should run fast - see the migrations best practices section
below. This will also make sure third party environments have the change applied. This second PR also finally
contains user-facing references to the user_repr field, since by the time the code switch happens, everything
will have been migrated.

67.3.3 Single Deploy

While this single-deploy option is tempting compared to waiting weeks to get out a multi-deploy migration, it’s
really only suitable for specific situations like custom work and unreleased features, where we can be confident
the drawbacks are insignificant.
The main drawbacks are:

• This method requires manually running the Django migrations which are normally only run during deploy. Run-
ning migrations manually on a production environment is generally a bad idea.

• It is possible that there will be a gap in data between the final run of the data migration command and the new
going live (due to the sequence of events during a deploy).

If you decide to go down this route you should split your changes into two PRs:

• PR 1: Schema migration; data migration management command

• PR 2: Handle new data correctly; Django migration calling the management command; actual code relying on
the migration

Once the PRs have both been approved, merge PR 1, then set up a private release containing that change. Merging the
PR first will prevent migration conflicts with anyone else working in the area, and it’s a good idea that anything run on
a production environment is on the master branch.

Run your schema migration and management command directly:

cchq <ENV> django-manage --release=<NAME> migrate <APP_NAME> cchq <ENV>
django-manage --release=<NAME> my_data_migration_command

Then merge PR 2. The subsequent deploy will run your management command again, though it should be very quick
this time around, since nearly all data has been migrated, and finally the code changes will go live.

The big limitation here is that there’s a gap between the final run of the management command and go-live (especially
with the variation). Any changes in the interim won’t be accounted for. This is sometimes acceptable if you’re confident
no such changes will have happened (eg, the migration pertains only to a custom feature, and we know that project won’t
have relevant activity during that period).

418 Chapter 67. Migrations in Practice

CommCareHQ Documentation, Release 1.0

User Logging Example

Consider attempting to apply our example user logging migration with a single deploy. Make two PRs as described, so
they can be merged independently. Then while coordinating with the team, merge the first PR, deploy a private release,
and run the schema migration, then the management command.

The second PR can be merged and go live with the next deploy. This django migration will re-run the management
command, picking up any new changes since it was previously run. In our case, this should be a small enough data set
that it won’t hinder the deploy. However, any changes in the window between that run and go-live will not be migrated.
To pick up those changes, you can run the management command a third time after the deploy, which will ensure all
user logs have been migrated.

This is still not ideal, since for the period between go-live and this third run, there will be missing data in the DB and
that data will be in-use in the UI. Remember also that third party environments will have the management command
run only once, on the second deploy (unless we announce this as a required maintenance operation), which would mean
their data would have a gap in it.

67.4 Best practices for data migrations in Python

Consider codifying boundaries for your migration - This is especially useful for large migrations that might require
manual intervention or special handling on third party environments. See detailed instructions in the Auto-Managed
Migration Pattern doc.

Don’t fetch all data at once - Instead, use an iterator that streams data in chunks (note that django query-
set’s .iter() method does not do this). Some models have their own performant getters, for others, consider
queryset_to_iterator for SQL models, iter_update or IterDB for couch models. The chunked function is
also helpful for this.

Don’t write all data at once - Instead, write data in chunks (ideally) or individually (if needed, or if performance
isn’t a concern). For couch, use IterDB, iter_update, or db.bulk_save. For SQL, use django_bulk_update.
Remember though that these bulk options won’t call the save() method of your model, so be sure to check for any
relevant side effects or signals that happen there and either trigger them manually or use individual saves in this instance.

Don’t hold all data in memory - Since you’re submitting in chunks anyways, consider writing your changes in chunks
as you iterate through them, rather than saving them all up and submitting at the end.

Don’t write from elasticsearch - It’s sometimes necessary to use ES to find the data that needs to be modified, but
you should only return the ids of the objects you need, then pull the full objects from their primary database before
modifying and writing.

Check your assumptions - Consider what could go wrong and encode your assumptions about the state of the world.
Eg: if you expect a field to be blank, check that it is before overwriting. Consider what would happen if your migration
were killed in the middle - would that leave data in a bad state? Would the migration need to redo work when run again?
Couch data in particular, since it’s less structured than SQL, can contain surprising data, especially in old documents.

Only run migrations when needed - All historical migrations are run whenever a new environment is set up. This
means your migrations will be run in every future test run and in every future new production or development envi-
ronment. If your migration is only relevant to environments that already have data in the old format, decorate it with
@skip_on_fresh_install so that it is a noop for new environments.

67.4. Best practices for data migrations in Python 419

CommCareHQ Documentation, Release 1.0

420 Chapter 67. Migrations in Practice

CHAPTER

SIXTYEIGHT

AUTO-MANAGED MIGRATION PATTERN

A re-entrant data migration management command can be a useful way to perform large-scale data migrations in envi-
ronments where the migration takes a long time to complete due to the volume of data being migrated. A management
command is better than a simple Django migration because it can be designed to be stopped and started as many times
as necessary until all data has been migrated. Obviously the migration must be performed prior to the deployment of
any code depending on the finished migration, so it must be applied to all environments before that can happen.

However, it would be tedious and error prone to require everyone running smaller CommCare HQ environments, in-
cluding developers who are working on other parts of the project, to learn about and follow the painstaking manual
process used to migrate large environments. This document outlines a pattern that can be used to ensure a smooth
rollout to everyone running any size environment with minimal overhead for those running small environments.

68.1 Pattern Components

• A management command that performs the data migration.

– Unless downtime will be scheduled, the command should be written in a way that allows legacy code to
continue working while the migration is in progress. Techniques for achieving this are out of scope here.

– May accept a --dbname=xxxx parameter to limit operation to the given database.

• Change log entry in CommCare Cloud describing the steps to perform the migration manually by running the
management command.

• A Django migration that will

– Check if there are any items that need to be migrated

– Run the management command if necessary

– Verify management command success/failure

– Display an error and stop on failure

– Continue with next migration on success

421

CommCareHQ Documentation, Release 1.0

68.2 Django Migration Code Example

Edit as necessary to fit your use case. The constants at the top and the migration dependencies are the most important
things to review/change.

This example does a migration that only affects SQL data, but that is not required. It is also possible to apply this
pattern to migrations on non-SQL databases as long as the necessary checks (does the migration need to be run? did it
run successfully?) can be performed in the context of a Django migration.

import sys
import traceback

from django.core.management import call_command, get_commands
from django.db import migrations

from corehq.util.django_migrations import skip_on_fresh_install

COUNT_ITEMS_TO_BE_MIGRATED = "SELECT COUNT(*) FROM ..."
GIT_COMMIT_WITH_MANAGEMENT_COMMAND = "TODO change this"
AUTO_MIGRATE_ITEMS_LIMIT = 10000
AUTO_MIGRATE_COMMAND_NAME = "the_migration_management_command"
AUTO_MIGRATE_FAILED_MESSAGE = """
This migration cannot be performed automatically and must instead be run manually
before this environment can be upgraded to the latest version of CommCare HQ.
Instructions for running the migration can be found at this link:

https://commcare-cloud.readthedocs.io/en/latest/changelog/0000-example-entry.html
"""
AUTO_MIGRATE_COMMAND_MISSING_MESSAGE = """
You will need to checkout an older version of CommCare HQ before you can perform this␣
→˓migration
because the management command has been removed.

git checkout {commit}
""".format(commit=GIT_COMMIT_WITH_MANAGEMENT_COMMAND)

@skip_on_fresh_install
def _assert_migrated(apps, schema_editor):

"""Check if migrated. Raises SystemExit if not migrated"""
num_items = count_items_to_be_migrated(schema_editor.connection)

migrated = num_items == 0
if migrated:

return

if AUTO_MIGRATE_COMMAND_NAME not in get_commands():
print("")
print(AUTO_MIGRATE_FAILED_MESSAGE)
print(AUTO_MIGRATE_COMMAND_MISSING_MESSAGE)
sys.exit(1)

(continues on next page)

422 Chapter 68. Auto-Managed Migration Pattern

CommCareHQ Documentation, Release 1.0

(continued from previous page)

if num_items < AUTO_MIGRATE_ITEMS_LIMIT:
try:

add args and kwargs here as needed
call_command(AUTO_MIGRATE_COMMAND_NAME)
migrated = count_items_to_be_migrated(schema_editor.connection) == 0
if not migrated:

print("Automatic migration failed")
except Exception:

traceback.print_exc()
else:

print("Found %s items that need to be migrated." % num_items)
print("Too many to migrate automatically.")

if not migrated:
print("")
print(AUTO_MIGRATE_FAILED_MESSAGE)
sys.exit(1)

def count_items_to_be_migrated(connection):
"""Return the number of items that need to be migrated"""
with connection.cursor() as cursor:

cursor.execute(COUNT_ITEMS_TO_BE_MIGRATED)
return cursor.fetchone()[0]

class Migration(migrations.Migration):

dependencies = [
...

]

operations = [
migrations.RunPython(_assert_migrated, migrations.RunPython.noop)

]

68.3 Real-life example

XForm attachments to blob metadata migration.

68.3. Real-life example 423

https://github.com/dimagi/commcare-hq/blob/73f08b5da1b4eaa4cf1f804830c780d96742c9ff/corehq/form_processor/migrations/0078_blobmeta_migrated_check.py

CommCareHQ Documentation, Release 1.0

424 Chapter 68. Auto-Managed Migration Pattern

CHAPTER

SIXTYNINE

MIGRATING DATABASE DEFINITIONS

There are currently three persistent data stores in CommCare that can be migrated. Each of these have slightly different
steps that should be followed.

69.1 General

For all ElasticSearch and CouchDB changes, add a “reindex/migration” flag to your PR. These migrations generally
have some gotchas and require more planning for deploy than a postgres migration.

69.2 Adding Data

69.2.1 Postgres

Add the column as a nullable column. Creating NOT NULL constraints can lock the table and take a very long time to
complete. If you wish to have the column be NOT NULL, you should add the column as nullable and migrate data to
have a value before adding a NOT NULL constraint.

69.2.2 ElasticSearch

You only need to add ElasticSearch mappings if you want to search by the field you are adding. There are two ways to
do this:

a. Change the mapping’s name, add the field, and using ptop_preindex.

b. Add the field, reset the mapping, and using ptop_preindex with an in-place flag.

If you change the mapping’s name, you should add reindex/migration flag to your PR and coordinate your PR to run
ptop_preindex in a private release directory. Depending on the index and size, this can take somewhere between minutes
and days.

425

CommCareHQ Documentation, Release 1.0

69.2.3 CouchDB

You can add fields as needed to couch documents, but take care to handle the previous documents not having this field
defined.

69.3 Removing Data

69.3.1 General

Removing columns, fields, SQL functions, or views should always be done in multiple steps.

1. Remove any references to the field/function/view in application code

2. Wait until this code has been deployed to all relevant environments.

3. Remove the column/field/function/view from the database.

Step #2 isn’t reasonable to expect of external parties locally hosting HQ. For more on making migrations manageable
for all users of HQ, see the “Auto-Managed Migration Pattern” link below.

It’s generally not enough to remove these at the same time because any old processes could still reference the to be
deleted entity.

69.3.2 Couch

When removing a view, procedure depends on whether or not you’re removing an entire design doc (an entire _design
directory). If the removed view is the last one in the design doc, run prune_couch_views to remove it. If other views
are left in the design doc, a reindex is required.

69.3.3 ElasticSearch

If you’re removing an index, you can use prune_es_indices to remove all indices that are no longer referenced in code.

69.4 Querying Data

69.4.1 Postgres

Creating an index can lock the table and cause it to not respond to queries. If the table is large, an index is going to
take a long time. In that case:

1. Create the migration normally using django.

2. On all large environments, create the index concurrently. One way to do this is to use ./manage.py run_sql . . . to
apply the SQL to the database.

3. Once finished, fake the migration. Avoid this by using CREATE INDEX IF NOT EXISTS . . . in the migration if
possible.

4. Merge your PR.

426 Chapter 69. Migrating Database Definitions

https://github.com/dimagi/commcare-hq/blob/master/corehq/form_processor/management/commands/run_sql.py

CommCareHQ Documentation, Release 1.0

69.4.2 Couch

Changing views can block our deploys due to the way we sync our couch views. If you’re changing a view, please
sync with someone else who understands this process and coordinate with the team to ensure we can rebuild the view
without issue.

69.5 Migration Patterns and Best Practices

• Migrations in Practice

• Auto-Managed Migration Pattern

• Migrating models from couch to postgres

69.5. Migration Patterns and Best Practices 427

CommCareHQ Documentation, Release 1.0

428 Chapter 69. Migrating Database Definitions

CHAPTER

SEVENTY

MIGRATING MODELS FROM COUCH TO POSTGRES

This is a step by step guide to migrating a single model from couch to postgres.

70.1 Conceptual Steps

This is a multi-deploy process that keeps two copies of the data - one in couch, one in sql - in sync until the final piece
of code is deployed and the entire migration is complete. It has three phases:

1. Add SQL models and sync code

• Define the new SQL models, based on the existing couch classes and using the SyncSQLToCouchMixin to
keep sql changes in sync with couch.

• Add the SyncCouchToSQLMixin to the couch class so that changes to couch documents get reflected in
sql.

• Write a management command that subclasses PopulateSQLCommand, which will create/update a corre-
sponding SQL object for every couch document. This command will later be run by a django migration to
migrate the data. For large servers, this command will also need to be run manually, outside of a deploy, to
do the bulk of the migration.

2. Switch app code to read/write in SQL

• Update all code references to the couch classes to instead refer to the SQL classes.

• Write a django migration that integrates with PopulateSQLCommand to ensure that all couch and sql data
is synced.

3. Remove couch

• Delete the couch classes, and remove the SyncSQLToCouchMixin from the SQL classes.

70.2 Practical Steps

Even a simple model takes several pull requests to migrate, to avoid data loss while deploys and migrations are in
progress. Best practice is a minimum of three pull requests, described below, each deployed to all large environments
before merging the next one.

Some notes on source control:

• It’s best to create all pull requests at once so that reviewers have full context on the migration.

• It can be easier to do the work in a single branch and then make the branches for individual PRs later on.

429

https://github.com/dimagi/commcare-hq/blob/c2b93b627c830f3db7365172e9be2de0019c6421/corehq/ex-submodules/dimagi/utils/couch/migration.py#L115
https://github.com/dimagi/commcare-hq/blob/c2b93b627c830f3db7365172e9be2de0019c6421/corehq/ex-submodules/dimagi/utils/couch/migration.py#L4
https://github.com/dimagi/commcare-hq/blob/500040985e0aaffa9a220c65e81318a1afa4761b/corehq/apps/cleanup/management/commands/populate_sql_model_from_couch_model.py#L15

CommCareHQ Documentation, Release 1.0

• If you don’t typically run a linter before PRing, let the linter run on each PR and fix errors before opening the
next one.

• Avoid having more than one migration happening in the same django app at the same time, to avoid migration
conflicts.

70.2.1 PR 1: Add SQL model and migration management command, write to SQL

This should contain:

• A new model and a management command that fetches all couch docs and creates or updates the corresponding
SQL model(s).

– Start by running the management command evaluate_couch_model_for_sql django_app_name
MyDocType on a production environment. This will produce code to add to your models file, a new man-
agement command and also a test which will ensure that the couch model and sql model have the same
attributes.

∗ The reason to run on production is that it will examine existing documents to help determine things
like max_length. This also means it can take a while. If you have reasonable data locally, running it
locally is fine - but since the sql class will often have stricter data validation than couch, it’s good to
run it on prod at some point.

∗ If the script encounters any list or dict properties, it’ll ask you if they’re submodels. If you say no,
it’ll create them as json columns. If you say yes, it’ll skip them, because it doesn’t currently handle
submodels. For the same reason, it’ll skip SchemaProperty and SchemaListProperty attributes. More
on this subject below.

∗ Properties found on documents in Couch that are not members of the Couch model class will be added
to the SQL model. In most cases they can be dropped (and not migrated to SQL).

∗ Properties that are present in the Couch model, but always null or not found in Couch will be added
to the SQL model as unknown_type(null=True). These fields may be able to be dropped (and not
migrated to SQL).

– Add the generated models code to your models file. Edit as needed. Note the TODOs marked in the code:

∗ The new class’s name will start with “SQL” but specify table name db_table that does not include
“sql.” This is so that the class can later be renamed back to the original couch class’s name by just re-
moving the db_table. This avoids renaming the table in a django migration, which can be a headache
when submodels are involved.

∗ The new class will include a column for couch document id.

∗ The generated code uses SyncCouchToSQLMixin and SyncSQLToCouchMixin. If your
model uses submodels, you will need to add overrides for _migration_sync_to_sql and
_migration_sync_to_couch. If you add overrides, definitely add tests for them. Sync bugs are
one of the easiest ways for this to go terribly wrong.

· For an example of overriding the sync code for submodels, see the CommtrackConfig migration,
or the CustomDataFields migration which is simpler but includes a P1-level bug fixed here.

· Beware that the sync mixins capture exceptions thrown while syncing in favor of calling
notify_exception. If you’re overwriting the sync code, this makes bugs easy to miss. The
branch jls/sync-mixins-hard-fail is included on staging to instead make syncing fail hard;
you might consider doing the same while testing locally.

∗ Consider if your new model could use any additional db_index flags or a unique_together.

430 Chapter 70. Migrating models from couch to postgres

https://github.com/dimagi/commcare-hq/blob/c2b93b627c830f3db7365172e9be2de0019c6421/corehq/ex-submodules/dimagi/utils/couch/migration.py#L4
https://github.com/dimagi/commcare-hq/blob/c2b93b627c830f3db7365172e9be2de0019c6421/corehq/ex-submodules/dimagi/utils/couch/migration.py#L115
https://github.com/dimagi/commcare-hq/pull/27597/
https://github.com/dimagi/commcare-hq/pull/27276/
https://github.com/dimagi/commcare-hq/pull/28001/

CommCareHQ Documentation, Release 1.0

∗ Some docs have attributes that are couch ids of other docs. These are weak spots easy to forget when
the referenced doc type is migrated. Add a comment so these show up in a grep for the referenced doc
type.

– Run makemigrations

– Add the test that was generated to it’s respective place. - The test file uses a ModelAttrEquality util which
has methods for running the equality tests. - The test class that is generated will have two attributes
couch_only_attrs, sql_only_attrs and one method test_have_same_attrs. - Generally during a migration
some attributes and methods are renamed or removed as per need. To accomodate the changes you can
update couch_only_attrs and sql_only_attrs. - couch_only_attrs should be a set of attributes and methods
which are either removed, renamed or not used anymore in SQL. - sql_only_attrs should be a set of attributes
and methods that are new in the SQL model. - test_have_same_attrs will test the equality of the attributes.
The default implementation should work if you have populated couch_only_attrs and sql_only_attrs but
you can modify it’s implementation as needed.

– Add the generated migration command. Notes on this code:

∗ The generated migration does not handle submodels. Support for submodels with non-legacy
bulk migrations might just work, but has not been tested. Legacy migrations that implement
update_or_create_sql_object should handle submodels in that method.

∗ Legacy mode: each document is saved individually rather than in bulk when
update_or_create_sql_object is implemented. update_or_create_sql_object popu-
lates the sql models based on json alone, not the wrapped document (to avoid introducing another
dependency on the couch model). You may need to convert data types that the default wrap implemen-
tation would handle. The generated migration will use force_to_datetime to cast datetimes but
will not perform any other wrapping. Similarly, if the couch class has a wrap method, the migration
needs to manage that logic. As an example, CommtrackActionConfig.wrap was defined here and
handled in this migration. WARNING: migrations that use update_or_create_sql_object have
a race condition.

· A normal HQ operation loads a Couch document.

· A PopulateSQLCommand migration loads the same document in a batch of 100.

· The HQ operation modifies and saves the Couch document, which also syncs changes to SQL (the
migration’s copy of the document is now stale).

· The migration calls update_or_create_sql_object which overwrites above changes, revert-
ing SQL to the state of its stale Couch document.

∗ The command will include a commit_adding_migration method to let third parties know which
commit to deploy if they need to run the migration manually. This needs to be updated after this PR
is merged, to add the hash of the commit that merged this PR into master.

• Most models belong to a domain. For these:

– Add the new model to DOMAIN_DELETE_OPERATIONS so it gets deleted when the domain is deleted.

– Update tests in test_delete_domain.py. Sample PR that handles several app manager models.

– Add the new model to sql/dump.py so that it gets included when a domain is exported.

To test this step locally:

• With master checked out, make sure you have at least one couch document that will get migrated.

• Check out your branch and run the populate command. Verify it creates as many objects as expected.

• Test editing the pre-existing object. In a shell, verify your changes appear in both couch and sql.

• Test creating a new object. In a shell, verify your changes appear in both couch and sql.

70.2. Practical Steps 431

https://github.com/dimagi/commcare-hq/commit/03f1d18fac311e71a19747a035155f9121b7a869
https://github.com/dimagi/commcare-hq/pull/27597/files#diff-10eba0437b0d32b2a455e5836dc4bd93f4297c9c9d89078334f31d9eacda2258R113
https://github.com/dimagi/commcare-hq/blob/522294560cee0f3ac1ddeae0501d653b1ea0f215/corehq/apps/domain/deletion.py#L179
https://github.com/dimagi/commcare-hq/pull/26310/files
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/dump_reload/sql/dump.py

CommCareHQ Documentation, Release 1.0

Automated tests are also a good idea. Automated tests are definitely necessary if you overrode any parts of the sync
mixins. Example of tests for sync and migration code.

The migration command has a --verify option that will find any differences in the couch data vs the sql data.

The --fixup-diffs=/path/to/migration-log.txt option can be used to resolve differences between Couch and
SQL state. Most differences reported by the migration command should be transient; that is, they will eventually be
resolved by normal HQ operations, usually within a few milliseconds. The ``–fixup-diffs`` option should only be
used to fix persistent differences caused by a bug in the Couch to SQL sync logic after the bug has been fixed. If
a bug is discovered and most rows have diffs and (important!) PR 2 has not yet been merged, it may be more efficient
to fix the bug, delete all SQL rows (since Couch is still the source of truth), and redo the migration.

Once this PR is deployed - later, after the whole shebang has been QAed - you’ll run the migration command in any
environments where it’s likely to take more than a trivial amount of time. If the model is tied to domains you should
initially migrate a few selected domains using --domains X Y Z and manually verify that the migration worked as
expected before running it for all the data.

70.2.2 PR 2: Verify migration and read from SQL

This should contain:

• A django migration that verifies all couch docs have been migrated and cleans up any stragglers, using the auto-
managed migration pattern.

– This should be trivial, since all the work is done in the populate command from the previous PR.

– The migration does an automatic completeness check by comparing the number of documents in Couch
to the number of rows in SQL. If the counts do not match then the migration is considered incomplete,
and the migration will calculate the difference and either migrate the remaining documents automati-
cally or prompt for manual action. NOTE: if the automatic migration route is chosen (in the case of
a small difference) the migration may still take a long time if the total number of documents in Couch
is large since the migration must check every document in Couch (of the relevant doc type) to see if it
has been migrated to SQL. A count mismatch is more likely when documents are written (created and/or
deleted) frequently. One way to work around this is to use the --override-is-migration-completed
option of PopulateSQLCommand to force the migration into a completed state. WARNING: careless
use of that option may result in an incomplete migration. It is recommended to only force a completed
state just before the migration is applied (e.g., just before deploying), and after checking the counts with
--override-is-migration-completed=check.

– Sample migration for RegistrationRequest.

• Replacements of all code that reads from the couch document to instead read from SQL. This is the hard part:
finding all usages of the couch model and updating them as needed to work with the sql model. Some patterns
are:

– Replacing couch queries with SQL queries.

– Unpacking code that takes advantage of couch docs being json.

– Replacing get_id with id - including in HTML templates, which don’t typically need changes - and
MyModel.get(ID) with SQLMyModel.objects.get(id=ID).

For models with many references, it may make sense to do this work incrementally, with a first PR that includes the
verification migration and then subsequent PRs that each update a subset of reads. Throughout this phase, all data
should continue to be saved to both couch and sql.

After testing locally, this PR is a good time to ask the QA team to test on staging. Template for QA request notes:

432 Chapter 70. Migrating models from couch to postgres

https://github.com/dimagi/commcare-hq/pull/28042/files#diff-a1ef9cf2695fb1e0498e49c9f2643c3a
https://commcare-hq.readthedocs.io/migration_command_pattern.html#auto-managed-migration-pattern
https://commcare-hq.readthedocs.io/migration_command_pattern.html#auto-managed-migration-pattern
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/registration/migrations/0003_populate_sqlregistrationrequest.py
https://github.com/dimagi/commcare-hq/pull/26399/commits/e270e5c1fb932c850b6a356208f1ff6ae0e06299#diff-d87e129c5e1224e4b046b4872e35bf2c041788a14c74cf1cedfe0fa7ba920bc6
https://github.com/dimagi/commcare-hq/pull/26399/commits/f04afe870f92293074fb1f6127c716330dabdc36

CommCareHQ Documentation, Release 1.0

This is a couch to sql migration, with the usual approach:
- Set up <workflow to create items in couch>.
- Ping me on the ticket and I'll deploy the code to staging and run the migration
- Test that you can <workflows to edit the items created earlier> and also <workflow to␣
→˓create new items>.

70.2.3 PR 3: Cleanup

This is the cleanup PR. Wait a few weeks after the previous PR to merge this one; there’s no rush. Clean up:

• If your sql model uses a couch_id, remove it. Sample commit for HqDeploy

• Remove the old couch model, which at this point should have no references. This includes removing any syncing
code.

• Now that the couch model is gone, rename the sql model from SQLMyModel to MyModel. Assuming you set up
db_table in the initial PR, this is just removing that and running makemigrations.

• Add the couch class to DELETABLE_COUCH_DOC_TYPES. Blame deletable_doc_types.py for examples.

• Remove any couch views that are no longer used. Remember this may require a reindex; see the main db migration
docs.

70.3 Current State of Migration

The current state of the migration is available internally here, which outlines approximate LOE, risk level, and notes
on the remaining models.

For a definitive account of remaining couch-based models, you can identify all classes that descend from Document:

from dimagi.ext.couchdbkit import Document

def all_subclasses(cls):
return set(cls.__subclasses__()).union([s for c in cls.__subclasses__() for s in all_

→˓subclasses(c)])

sorted([str(s) for s in all_subclasses(Document)])

To find how many documents of a given type exist in a given environment:

from corehq.dbaccessors.couchapps.all_docs import get_doc_ids_by_class, get_deleted_doc_
→˓ids_by_class

len(list(get_doc_ids_by_class(MyDocumentClass) + get_deleted_doc_ids_by_
→˓class(MyDocumentClass)))

There’s a little extra value to migrating models that have dedicated views:

grep -r MyDocumentClass . | grep _design.*map.js

There’s a lot of extra value in migrating areas where you’re familiar with the code context.

Ultimately, all progress is good.

70.3. Current State of Migration 433

https://github.com/dimagi/commcare-hq/pull/26442/commits/79a1c49013fb09fb47690ebcd0a51bc85fb1d560
https://github.com/dimagi/commcare-hq/blame/74bc31910f692126f03c46a350ab8ae5700f87dd/corehq/apps/cleanup/deletable_doc_types.py
https://commcare-hq.readthedocs.io/migrations.html
https://commcare-hq.readthedocs.io/migrations.html
https://docs.google.com/spreadsheets/d/1iayf898ktfSRXdjBVutj_AgH4WN9DrheMS6vgteqfFM/edit#gid=677779031

CommCareHQ Documentation, Release 1.0

434 Chapter 70. Migrating models from couch to postgres

CHAPTER

SEVENTYONE

1. RECORD ARCHITECTURE DECISIONS

Date: 2018-07-04

71.1 Status

Accepted

71.2 Context

We need to record the architectural decisions made on this project.

71.3 Decision

We will use Architecture Decision Records, as described by Michael Nygard.

71.4 Consequences

See Michael Nygard’s article, linked above. For a lightweight ADR toolset, see Nat Pryce’s adr-tools.

435

http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions
https://github.com/npryce/adr-tools

CommCareHQ Documentation, Release 1.0

436 Chapter 71. 1. Record architecture decisions

CHAPTER

SEVENTYTWO

2. KEEP STATIC UCR CONFIGURATIONS IN MEMORY

Date: 2018-07-04

72.1 Status

Accepted

72.2 Context

As part of the UCR framework configurations for data sources and reports may be stored in the database or as static
files shipped with the code.

These static files can apply to many different domains and even different server environments.

When a data source or report configuraiton is requested the static configuration is read from disk and converted into
the appropriate JsonObject class.

During some performance testing on ICDS it was noted that the process or readying the static configuration files from
disk and converting them to the JsonObject classes was taking up significant time (14% of restore time for ICDS).

72.3 Decision

To improve the performance (primarily of restores) it was decided to maintain the list of configurations in memeory
rather than re-read them from disk for each request.

In order to keep the memory footprint to a minimum only the static configurations are kept in memory and not the
generated classes. This also serves to ensure that any modifications that may get made to the classes do not persist.

There are still some places that re-read the configurations from disk each time but these not called in places that require
high performance. An example of this is the UCR pillow bootstrapping.

437

CommCareHQ Documentation, Release 1.0

72.4 Consequences

Although this may raise the memory usage of the processes (after the configurations have been loaded) it should be
noted that even in the current setup all the configurations are loaded on first request in order to generate the list of
available data sources / reports. It may be that memory get’s released at some point after the initial load.

In terms of actual memory footprint the figures are as follows:

Base memory: 285Mb Data sources: 60Mb Report configs: 35Mb

438 Chapter 72. 2. Keep static UCR configurations in memory

CHAPTER

SEVENTYTHREE

3. REMOVE WAREHOUSE DATABASE

Date: 2019-10-16

73.1 Status

Accepted

73.2 Context

The data warehouse was intended to house data for all CommCare HQ reports. The warehouse would replace Elastic-
search in almost all contexts that it is currently used. The migration began in 2017 with the Application Status report
and the effort to move the report to the warehouse and ensure it is stable, performs well and provides the same features
as the ES-backed reports was much higher than anticipated.

73.3 Decision

To reduce our infrastructure dependencies and focus our efforts on existing databases, we have decided to remove the
warehouse and stop any efforts to iterate on it.

This decision is not because we believe that the warehouse is a worse implementation than Elasticsearch. This decision
is because we believe that with our current priorities, we will not be able to spend the appropriate amount of time to
make the warehouse a robust solution for generic reports in the near future. Because no current reports are backed by
the warehouse, it is an important time to reconsider our approach and decide on what will be appropriate long term.

When there are more dedicated resources for generic reports, we believe that a warehouse-style approach should be
considered when implementing.

73.4 Consequences

The warehouse was intended to reduce our usage of Elasticsearch and assist in an effort to remove many dependencies
on our cluster. No matter the short term status of the warehouse, we need to improve our management of ES soon. This
will include upgrading to more recent versions, re-indexing indexes to contain more shards, and supporting aliases that
consist of multiple indexes.

The Application Status report also uniquely adds a lot of load on our CouchDB cluster. This load comes from the
pillows for the report updating the user doc to contain the latest metadata. There will be a separate change that batches
these updates to CouchDB into chunks.

439

CommCareHQ Documentation, Release 1.0

440 Chapter 73. 3. Remove warehouse database

CHAPTER

SEVENTYFOUR

DOCUMENTING

Documentation is awesome. You should write it. Here’s how.

All the CommCare HQ docs are stored in a docs/ folder in the root of the repo. To add a new doc, make an
appropriately-named rst file in the docs/ directory. For the doc to appear in the table of contents, add it to the toctree
list in index.rst.

Sooner or later we’ll probably want to organize the docs into sub-directories, that’s fine, you can link to specific locations
like so: Installation <intro/install>.

For a nice example set of documentation, check out Django’s docs directory. This is used to build
docs.djangoproject.com.

74.1 Index

1. Sphinx is used to build the documentation.

2. Read the Docs is used for hosting.

3. Writing Documentation - Some general tips for writing documentation

4. reStructuredText is used for markup.

5. Editors with RestructuredText support

74.2 Sphinx

Sphinx builds the documentation and extends the functionality of rst a bit for stuff like pointing to other files and
modules.

To build a local copy of the docs (useful for testing changes), navigate to the docs/ directory and run make html.
Open <path_to_commcare-hq>/docs/_build/html/index.html in your browser and you should have access to
the docs for your current version (I bookmarked it on my machine).

• Sphinx Docs

• Full index

441

https://github.com/django/django/tree/master/docs
https://docs.djangoproject.com
http://sphinx-doc.org/
http://sphinx-doc.org/genindex.html

CommCareHQ Documentation, Release 1.0

74.3 Read the Docs

Dimagi maintains the hosted version of the documentation at readthedocs.io. For Dimagi employees, the credentials
are maintained in our internal password manager under the “readthedocs” entry.

The configuration for Read the Docs lives in .readthedocs.yml, which calls the docs/conf.py script.

Due to problematic dependencies that need to be mocked, we cannot properly setup django apps until after docs/
conf.py has been applied. We then must be aware that we are performing a docs build, at which point we can run
django.setup() in corehq/__init__.py. We use an environment variable (DOCS_BUILD) to convey this information,
which is set in the Admin UI of our readthedocs.io account.

74.3.1 Troubleshooting

The docs are built with every new merge to master. This build can fail completely, or “succeed” with errors. If you
made a change that’s not appearing, or if autodoc doesn’t seem to be working properly, you should check the build.

On Read the Docs, in the bottom left, you should see “v: latest”. Click to expand, then click “Builds”. There you
should see a build history (you don’t need to log in for this). Click on the latest build. I find the “view raw” display to
be more useful. That should show logs and any tracebacks.

Running autodoc or automodule requires that sphinx be able to load the code to import docstrings. This means that
~all of the source code’s requirements to be installed, and the code cannot do complex stuff like database queries on
module load. Build failures are likely caused by issues there.

Replicating the build environment

Read the Docs builds in an environment that doesn’t have any support services, so turn those off. Next, make a new
virtual environment with just the docs requirements. Finally, build the docs, which should surface any errors that’d
appear on the build server.

$ cd commcare-hq/
$ mkvirtualenv --python=python3.9 hq-docs
$ pip install -r requirements/docs-requirements.txt
$ cd docs/
$ make html

74.4 Writing Documentation

For some great references, check out Jacob Kaplan-Moss’s series Writing Great Documentation and this blog post by
Steve Losh. Here are some takeaways:

• Use short sentences and paragraphs

• Break your documentation into sections to avoid text walls

• Avoid making assumptions about your reader’s background knowledge

• Consider three types of documentation:

1. Tutorials - quick introduction to the basics

2. Topical Guides - comprehensive overview of the project; everything but the dirty details

3. Reference Material - complete reference for the API

442 Chapter 74. Documenting

http://jacobian.org/writing/great-documentation/
http://stevelosh.com/blog/2013/09/teach-dont-tell/
http://jacobian.org/writing/what-to-write/

CommCareHQ Documentation, Release 1.0

One aspect that Kaplan-Moss doesn’t mention explicitly (other than advising us to “Omit fluff” in his Technical style
piece) but is clear from both his documentation series and the Django documentation, is what not to write. It’s an
important aspect of the readability of any written work, but has other implications when it comes to technical writing.

Antoine de Saint Exupéry wrote, “. . . perfection is attained not when there is nothing more to add, but when there is
nothing more to remove.”

Keep things short and take stuff out where possible. It can help to get your point across, but, maybe more importantly
with documentation, means there is less that needs to change when the codebase changes.

Think of it as an extension of the DRY principle.

74.5 reStructuredText

reStructuredText is a markup language that is commonly used for Python documentation. You can view the source of
this document or any other to get an idea of how to do stuff (this document has hidden comments). Here are some
useful links for more detail:

• rst quickreference

• Sphinx guide to rst

• reStructuredText full docs

• Referencing arbitrary locations and other documents

74.6 Editors

While you can use any text editor for editing RestructuredText documents, I find two particularly useful:

• PyCharm (or other JetBrains IDE, like IntelliJ), which has great syntax highlighting and linting.

• Sublime Text, which has a useful plugin for hard-wrapping lines called Sublime Wrap Plus. Hard-wrapped lines
make documentation easy to read in a console, or editor that doesn’t soft-wrap lines (i.e. most code editors).

• Vim has a command gq to reflow a block of text (:help gq). It uses the value of textwidth to wrap (:setl
tw=75). Also check out :help autoformat. Syntastic has a rst linter. To make a line a header, just yypVr=
(or whatever symbol you want).

74.6.1 Examples

Some basic examples adapted from 2 Scoops of Django:

Section Header

Sections are explained well here

emphasis (bold/strong)
italics

Simple link: http://commcarehq.org

Inline link: CommCare HQ

74.5. reStructuredText 443

http://jacobian.org/writing/technical-style/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx-doc.org/rest.html
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/markup/inline.html#ref-role
https://github.com/ehuss/Sublime-Wrap-Plus
http://docutils.sourceforge.net/docs/user/rst/quickstart.html#sections
http://commcarehq.org
https://commcarehq.org

CommCareHQ Documentation, Release 1.0

Fancier Link: CommCare HQ

1. An enumerated list item

2. Second item

• First bullet

• Second bullet
– Indented Bullet

– Note carriage return and indents

Literal code block:

def like():
print("I like Ice Cream")

for i in range(10):
like()

Python colored code block (requires pygments):

You need to "pip install pygments" to make this work.

for i in range(10):
like()

JavaScript colored code block:

console.log("Don't use alert()");

444 Chapter 74. Documenting

https://commcarehq.org

CHAPTER

SEVENTYFIVE

INDICES AND TABLES

• genindex

• modindex

• search

445

CommCareHQ Documentation, Release 1.0

446 Chapter 75. Indices and tables

PYTHON MODULE INDEX

c
corehq.apps.app_manager.suite_xml.post_process.endpoints,

41
corehq.apps.app_manager.suite_xml.post_process.instances,

41
corehq.apps.app_manager.suite_xml.post_process.menu,

42
corehq.apps.app_manager.suite_xml.post_process.remote_requests,

42
corehq.apps.app_manager.suite_xml.post_process.resources,

42
corehq.apps.app_manager.suite_xml.post_process.workflow,

42
corehq.apps.app_manager.suite_xml.sections.details,

40
corehq.apps.app_manager.suite_xml.sections.entries,

40
corehq.apps.app_manager.suite_xml.sections.fixtures,

40
corehq.apps.app_manager.suite_xml.sections.menus,

40
corehq.apps.app_manager.suite_xml.sections.resources,

41
corehq.apps.es.client, 343
corehq.apps.locations.permissions, 75
corehq.extensions, 406
corehq.motech.value_source, 236
custom.covid.rules.custom_actions, 413
custom.covid.rules.custom_criteria, 413

447

CommCareHQ Documentation, Release 1.0

448 Python Module Index

INDEX

Symbols
__init__() (corehq.apps.es.client.BaseAdapter

method), 343
__init__() (corehq.apps.es.client.BulkActionItem

method), 343
__init__() (corehq.apps.es.client.ElasticDocumentAdapter

method), 343
__init__() (corehq.apps.es.client.ElasticMultiplexAdapter

method), 350
__init__() (corehq.apps.es.client.Tombstone method),

351
__init__() (corehq.motech.value_source.CaseOwnerAncestorLocationField

method), 236
__init__() (corehq.motech.value_source.CaseProperty

method), 237
__init__() (corehq.motech.value_source.CasePropertyConstantValue

method), 237
__init__() (corehq.motech.value_source.ConstantValue

method), 238
__init__() (corehq.motech.value_source.FormQuestion

method), 238
__init__() (corehq.motech.value_source.FormUserAncestorLocationField

method), 239
__init__() (corehq.motech.value_source.SubcaseValueSource

method), 239
__init__() (corehq.motech.value_source.SupercaseValueSource

method), 239
__init__() (corehq.motech.value_source.ValueSource

method), 240
_get_cache_invalidation_pillow() (in module

corehq.pillows.cacheinvalidate), 102

A
AddDaysExpressionSpec (class in

corehq.apps.userreports.expressions.date_specs),
123

AddHoursExpressionSpec (class in
corehq.apps.userreports.expressions.date_specs),
124

AddMonthsExpressionSpec (class in
corehq.apps.userreports.expressions.date_specs),
124

AncestorLocationExpression (class in
corehq.apps.locations.ucr_expressions),
122

ArrayIndexExpressionSpec (class in
corehq.apps.userreports.expressions.specs),
119

associated_usercase_closed() (in module cus-
tom.covid.rules.custom_criteria), 413

B
BaseAdapter (class in corehq.apps.es.client), 343
bulk() (corehq.apps.es.client.ElasticDocumentAdapter

method), 343
bulk() (corehq.apps.es.client.ElasticMultiplexAdapter

method), 350
bulk_delete() (corehq.apps.es.client.ElasticDocumentAdapter

method), 344
bulk_index() (corehq.apps.es.client.ElasticDocumentAdapter

method), 344
BulkActionItem (class in corehq.apps.es.client), 343
BulkActionItem.OpType (class in

corehq.apps.es.client), 343
BulkElasticProcessor (class in pillow-

top.processors.elastic), 105

C
CacheInvalidateProcessor (class in

corehq.pillows.cacheinvalidate), 104
cancel_task() (corehq.apps.es.client.ElasticManageAdapter

method), 347
CaseMessagingSyncProcessor (class in

corehq.messaging.pillow), 105
CaseOwnerAncestorLocationField (class in

corehq.motech.value_source), 236
CaseProperty (class in corehq.motech.value_source),

236
CasePropertyConstantValue (class in

corehq.motech.value_source), 237
CaseSharingGroupsExpressionSpec (class in

corehq.apps.userreports.expressions.specs),
128

449

CommCareHQ Documentation, Release 1.0

close_cases_assigned_to_checkin() (in module
custom.covid.rules.custom_actions), 413

cluster_health() (corehq.apps.es.client.ElasticManageAdapter
method), 347

cluster_routing() (corehq.apps.es.client.ElasticManageAdapter
method), 347

CoalesceExpressionSpec (class in
corehq.apps.userreports.expressions.specs),
119

columns (corehq.apps.reports.sqlreport.SqlData prop-
erty), 78

ConditionalExpressionSpec (class in
corehq.apps.userreports.expressions.specs),
118

ConfigurableReportPillowProcessor (class in
corehq.apps.userreports.pillow), 105

ConstantGetterSpec (class in
corehq.apps.userreports.expressions.specs),
116

ConstantValue (class in corehq.motech.value_source),
237

corehq.apps.app_manager.suite_xml.post_process.endpoints
module, 41

corehq.apps.app_manager.suite_xml.post_process.instances
module, 41

corehq.apps.app_manager.suite_xml.post_process.menu
module, 42

corehq.apps.app_manager.suite_xml.post_process.remote_requests
module, 42

corehq.apps.app_manager.suite_xml.post_process.resources
module, 42

corehq.apps.app_manager.suite_xml.post_process.workflow
module, 42

corehq.apps.app_manager.suite_xml.sections.details
module, 40

corehq.apps.app_manager.suite_xml.sections.entries
module, 40

corehq.apps.app_manager.suite_xml.sections.fixtures
module, 40

corehq.apps.app_manager.suite_xml.sections.menus
module, 40

corehq.apps.app_manager.suite_xml.sections.resources
module, 41

corehq.apps.es.client
module, 343

corehq.apps.locations.permissions
module, 75

corehq.extensions
module, 406

corehq.motech.value_source
module, 236

count() (corehq.apps.es.client.ElasticDocumentAdapter
method), 344

create_document_adapter() (in module
corehq.apps.es.client), 351

custom.covid.rules.custom_actions
module, 413

custom.covid.rules.custom_criteria
module, 413

D
delete() (corehq.apps.es.client.BulkActionItem class

method), 343
delete() (corehq.apps.es.client.ElasticDocumentAdapter

method), 344
delete() (corehq.apps.es.client.ElasticMultiplexAdapter

method), 350
delete_id() (corehq.apps.es.client.BulkActionItem

class method), 343
delete_tombstones()

(corehq.apps.es.client.ElasticDocumentAdapter
method), 344

deserialize() (corehq.motech.value_source.ConstantValue
method), 238

deserialize() (corehq.motech.value_source.ValueSource
method), 240

deserialize() (in module
corehq.motech.value_source), 240

DictExpressionSpec (class in
corehq.apps.userreports.expressions.specs),
123

DiffDaysExpressionSpec (class in
corehq.apps.userreports.expressions.date_specs),
124

distinct_on (corehq.apps.reports.sqlreport.SqlData
property), 78

E
ElasticDocumentAdapter (class in

corehq.apps.es.client), 343
ElasticManageAdapter (class in

corehq.apps.es.client), 347
ElasticMultiplexAdapter (class in

corehq.apps.es.client), 350
ElasticProcessor (class in pillow-

top.processors.elastic), 105
EvalExpressionSpec (class in

corehq.apps.userreports.expressions.specs),
125

EvalExpressionSpec.context() (in module
corehq.apps.userreports.expressions.specs),
126

EvalExpressionSpec.date() (in module
corehq.apps.userreports.expressions.specs),
126

EvalExpressionSpec.float() (in module
corehq.apps.userreports.expressions.specs),

450 Index

CommCareHQ Documentation, Release 1.0

126
EvalExpressionSpec.int() (in module

corehq.apps.userreports.expressions.specs),
126

EvalExpressionSpec.jsonpath() (in module
corehq.apps.userreports.expressions.specs),
126

EvalExpressionSpec.named() (in module
corehq.apps.userreports.expressions.specs),
127

EvalExpressionSpec.rand() (in module
corehq.apps.userreports.expressions.specs),
127

EvalExpressionSpec.randint() (in module
corehq.apps.userreports.expressions.specs),
127

EvalExpressionSpec.range() (in module
corehq.apps.userreports.expressions.specs),
127

EvalExpressionSpec.root_context() (in module
corehq.apps.userreports.expressions.specs),
127

EvalExpressionSpec.round() (in module
corehq.apps.userreports.expressions.specs),
127

EvalExpressionSpec.str() (in module
corehq.apps.userreports.expressions.specs),
127

EvalExpressionSpec.timedelta_to_seconds() (in
module corehq.apps.userreports.expressions.specs),
127

EvalExpressionSpec.today() (in module
corehq.apps.userreports.expressions.specs),
127

exists() (corehq.apps.es.client.ElasticDocumentAdapter
method), 344

export_adapter() (corehq.apps.es.client.ElasticDocumentAdapter
method), 345

F
filter_values (corehq.apps.reports.sqlreport.SqlData

property), 78
FilterItemsExpressionSpec (class in

corehq.apps.userreports.expressions.list_specs),
129

filters (corehq.apps.reports.sqlreport.SqlData prop-
erty), 78

FlattenExpressionSpec (class in
corehq.apps.userreports.expressions.list_specs),
131

FormQuestion (class in corehq.motech.value_source),
238

FormSubmissionMetadataTrackerProcessor (class
in pillowtop.processors.form), 104

FormUserAncestorLocationField (class in
corehq.motech.value_source), 238

from_python() (corehq.apps.es.client.ElasticDocumentAdapter
method), 345

G
get() (corehq.apps.es.client.ElasticDocumentAdapter

method), 345
get_aliases() (corehq.apps.es.client.ElasticManageAdapter

method), 347
get_app_to_elasticsearch_pillow() (in module

corehq.pillows.application), 102
get_case_location() (in module

corehq.motech.value_source), 240
get_case_messaging_sync_pillow() (in module

corehq.messaging.pillow), 102
get_case_pillow() (in module corehq.pillows.case),

99
get_case_search_processor() (in module

corehq.pillows.case_search), 105
get_case_search_to_elasticsearch_pillow() (in

module corehq.pillows.case_search), 102
get_case_to_elasticsearch_pillow() (in module

corehq.pillows.case), 99
get_change_feed_pillow_for_db() (in module

corehq.apps.change_feed.pillow), 103
get_client() (in module corehq.apps.es.client), 351
get_data() (corehq.apps.reports.api.ReportDataSource

method), 81
get_docs() (corehq.apps.es.client.ElasticDocumentAdapter

method), 345
get_domain_kafka_to_elasticsearch_pillow()

(in module corehq.pillows.domain), 101
get_form_question_values() (in module

corehq.motech.value_source), 240
get_form_submission_metadata_tracker_pillow()

(in module corehq.pillows.app_submission_tracker),
102

get_group_pillow() (in module
corehq.pillows.groups_to_user), 100

get_group_pillow_old() (in module
corehq.pillows.group), 100

get_group_to_elasticsearch_processor() (in
module corehq.pillows.group), 103

get_group_to_user_pillow() (in module
corehq.pillows.groups_to_user), 100

get_import_value() (in module
corehq.motech.value_source), 240

get_indices() (corehq.apps.es.client.ElasticManageAdapter
method), 347

get_kafka_ucr_pillow() (in module
corehq.apps.userreports.pillow), 101

get_kafka_ucr_static_pillow() (in module
corehq.apps.userreports.pillow), 101

Index 451

CommCareHQ Documentation, Release 1.0

get_ledger_to_elasticsearch_pillow() (in mod-
ule corehq.pillows.ledger), 101

get_location_pillow() (in module
corehq.apps.userreports.pillow), 100

get_node_info() (corehq.apps.es.client.ElasticManageAdapter
method), 347

get_sql_sms_pillow() (in module
corehq.pillows.sms), 101

get_task() (corehq.apps.es.client.ElasticManageAdapter
method), 347

get_unknown_users_pillow() (in module
corehq.pillows.user), 102

get_user_pillow() (in module corehq.pillows.user),
100

get_user_pillow_old() (in module
corehq.pillows.user), 100

get_user_sync_history_pillow() (in module
corehq.pillows.synclog), 102

get_value() (corehq.motech.value_source.ValueSource
method), 240

get_value() (in module corehq.motech.value_source),
241

get_xform_pillow() (in module
corehq.pillows.xform), 99

get_xform_to_elasticsearch_pillow() (in module
corehq.pillows.xform), 100

group_by (corehq.apps.reports.sqlreport.SqlData prop-
erty), 78

GroupsToUsersProcessor (class in
corehq.pillows.groups_to_user), 103

I
index() (corehq.apps.es.client.BulkActionItem class

method), 343
index() (corehq.apps.es.client.ElasticDocumentAdapter

method), 345
index() (corehq.apps.es.client.ElasticMultiplexAdapter

method), 350
index_close() (corehq.apps.es.client.ElasticManageAdapter

method), 348
index_configure_for_reindex()

(corehq.apps.es.client.ElasticManageAdapter
method), 348

index_configure_for_standard_ops()
(corehq.apps.es.client.ElasticManageAdapter
method), 348

index_create() (corehq.apps.es.client.ElasticManageAdapter
method), 348

index_delete() (corehq.apps.es.client.ElasticManageAdapter
method), 348

index_exists() (corehq.apps.es.client.ElasticManageAdapter
method), 348

index_flush() (corehq.apps.es.client.ElasticManageAdapter
method), 348

index_get_mapping()
(corehq.apps.es.client.ElasticManageAdapter
method), 348

index_get_settings()
(corehq.apps.es.client.ElasticManageAdapter
method), 349

index_put_alias() (corehq.apps.es.client.ElasticManageAdapter
method), 349

index_put_mapping()
(corehq.apps.es.client.ElasticManageAdapter
method), 349

index_refresh() (corehq.apps.es.client.ElasticManageAdapter
method), 349

index_set_replicas()
(corehq.apps.es.client.ElasticManageAdapter
method), 349

index_validate_query()
(corehq.apps.es.client.ElasticManageAdapter
method), 349

indices_info() (corehq.apps.es.client.ElasticManageAdapter
method), 349

indices_refresh() (corehq.apps.es.client.ElasticManageAdapter
method), 349

info() (corehq.apps.es.client.BaseAdapter method), 343
is_delete (corehq.apps.es.client.BulkActionItem prop-

erty), 343
is_index (corehq.apps.es.client.BulkActionItem prop-

erty), 343
iter_docs() (corehq.apps.es.client.ElasticDocumentAdapter

method), 345
IterationNumberExpressionSpec (class in

corehq.apps.userreports.expressions.specs),
121

IteratorExpressionSpec (class in
corehq.apps.userreports.expressions.specs),
120

J
JsonpathExpressionSpec (class in

corehq.apps.userreports.expressions.specs),
117

K
KafkaProcessor (class in

corehq.apps.change_feed.pillow), 103
keys (corehq.apps.reports.sqlreport.SqlData property),

78

L
LedgerProcessor (class in corehq.pillows.ledger), 104

M
MapItemsExpressionSpec (class in

corehq.apps.userreports.expressions.list_specs),

452 Index

CommCareHQ Documentation, Release 1.0

128
module

corehq.apps.app_manager.suite_xml.post_process.endpoints,
41

corehq.apps.app_manager.suite_xml.post_process.instances,
41

corehq.apps.app_manager.suite_xml.post_process.menu,
42

corehq.apps.app_manager.suite_xml.post_process.remote_requests,
42

corehq.apps.app_manager.suite_xml.post_process.resources,
42

corehq.apps.app_manager.suite_xml.post_process.workflow,
42

corehq.apps.app_manager.suite_xml.sections.details,
40

corehq.apps.app_manager.suite_xml.sections.entries,
40

corehq.apps.app_manager.suite_xml.sections.fixtures,
40

corehq.apps.app_manager.suite_xml.sections.menus,
40

corehq.apps.app_manager.suite_xml.sections.resources,
41

corehq.apps.es.client, 343
corehq.apps.locations.permissions, 75
corehq.extensions, 406
corehq.motech.value_source, 236
custom.covid.rules.custom_actions, 413
custom.covid.rules.custom_criteria, 413

MonthStartDateExpressionSpec (class in
corehq.apps.userreports.expressions.date_specs),
125

N
NamedExpressionSpec (class in

corehq.apps.userreports.expressions.specs),
131

NestedExpressionSpec (class in
corehq.apps.userreports.expressions.specs),
122

O
OpenmrsConfig (class in

corehq.motech.openmrs.openmrs_config),
215

OpenmrsRepeater (class in
corehq.motech.openmrs.repeaters), 213

P
PatientFinder (class in

corehq.motech.openmrs.finders), 219
ping() (corehq.apps.es.client.BaseAdapter method), 343

PropertyNameGetterSpec (class in
corehq.apps.userreports.expressions.specs),
116

PropertyPathGetterSpec (class in
corehq.apps.userreports.expressions.specs),
117

R
ReduceItemsExpressionSpec (class in

corehq.apps.userreports.expressions.list_specs),
130

reindex() (corehq.apps.es.client.ElasticManageAdapter
method), 350

RelatedDocExpressionSpec (class in
corehq.apps.userreports.expressions.specs),
121

ReportDataSource (class in corehq.apps.reports.api),
81

ReportingGroupsExpressionSpec (class in
corehq.apps.userreports.expressions.specs),
128

S
scroll() (corehq.apps.es.client.ElasticDocumentAdapter

method), 346
search() (corehq.apps.es.client.ElasticDocumentAdapter

method), 346
serialize() (corehq.motech.value_source.ValueSource

method), 240
set_all_activity_complete_date_to_today() (in

module custom.covid.rules.custom_actions),
413

set_external_value()
(corehq.motech.value_source.SubcaseValueSource
method), 239

set_external_value()
(corehq.motech.value_source.SupercaseValueSource
method), 239

set_external_value()
(corehq.motech.value_source.ValueSource
method), 240

slugs() (corehq.apps.reports.api.ReportDataSource
method), 81

SortItemsExpressionSpec (class in
corehq.apps.userreports.expressions.list_specs),
130

SplitStringExpressionSpec (class in
corehq.apps.userreports.expressions.specs),
120

SqlData (class in corehq.apps.reports.sqlreport), 78
SubcaseValueSource (class in

corehq.motech.value_source), 239
SupercaseValueSource (class in

corehq.motech.value_source), 239

Index 453

CommCareHQ Documentation, Release 1.0

SwitchExpressionSpec (class in
corehq.apps.userreports.expressions.specs),
118

T
table_name (corehq.apps.reports.sqlreport.SqlData at-

tribute), 79
to_json() (corehq.apps.es.client.ElasticDocumentAdapter

method), 346
Tombstone (class in corehq.apps.es.client), 350

U
UnknownUsersProcessor (class in

corehq.pillows.user), 103
update() (corehq.apps.es.client.ElasticDocumentAdapter

method), 346
update() (corehq.apps.es.client.ElasticMultiplexAdapter

method), 350
UserSyncHistoryProcessor (class in

corehq.pillows.synclog), 104

V
ValueSource (class in corehq.motech.value_source),

240

W
WeightedPropertyPatientFinder (class in

corehq.motech.openmrs.finders), 220
wrap() (corehq.motech.value_source.CaseOwnerAncestorLocationField

class method), 236
wrap() (corehq.motech.value_source.FormUserAncestorLocationField

class method), 239
wrap() (corehq.motech.value_source.ValueSource class

method), 240

454 Index

	CommCare HQ Platform Overview
	Application Content Layer
	Application Building and Deployment Management
	Android Mobile App Runner and Web App Engine

	Application Data Layer
	Data Management
	Transaction Processing
	Synchronization

	Tenant Management Layer
	Project Spaces
	User Management
	Device and Worker Monitoring

	Analytics and Usage
	User Defined Reports
	Mobile Reports

	Messaging Layer
	Conditional Scheduled Messages
	Broadcast Messages
	Gateway Connectivity and Configuration, Logging, and Audit Tracking
	Messaging Dashboards

	Integration
	APIs
	MOTECH Repeaters

	CommCare Architecture Overview
	CommCare Backend Services
	Data flow for forms and cases
	Synchronous processing
	Asynchronous data pipeline

	Change Processors (Pillows)
	Task Queue
	Data Storage Layer
	PostgreSQL
	CouchDB
	Elasticsearch

	Devops Automation
	Fabric / Ansible

	Other services
	Nginx (proxy)
	Redis
	Apache Kafka
	RabbitMQ
	Gunicorn

	CommCare Enhancement Proposal Process
	Application terminology
	Applications (and builds)
	Modules
	Forms
	Exceptions

	Features
	Template apps
	Onboarding apps
	COVID app library

	Bulk Application Translations
	Multimedia
	General multimedia handling
	Multimedia in applications
	The app’s multimedia_map
	Versioning multimedia
	Linked apps

	media_suite.xml

	Adding a new CommCare Setting
	CommCare Settings Config Spec
	Required properties
	Optional
	Example

	App Navigation Features
	Display Only Forms
	Select Parent First
	End of Form Navigation and Form Linking
	Child Modules
	Menu structure
	Session Variables
	Matching session variable names
	Inserting missing variables

	Shadow Modules
	Scope
	Limitations
	Entries
	Menu structure
	Legacy Child Shadow Behaviour

	The Suite
	Overview
	Sections
	DetailContributor
	EntriesContributor
	FixtureContributor
	MenuContributor
	Resource Contributors

	Post Processors
	EndpointsHelper
	InstancesHelper
	How instances work
	Instances in CommCare HQ
	Custom instances
	RemoteRequestsHelper
	ResourceOverrideHelper
	WorkflowHelper

	Syncing local HQ instance with an Android Phone
	No syncing or submitting, easy method
	Make sure your local django application is accessible over the network
	Make CommCare use this IP address
	Try it out

	Submitting and syncing from your local HQ instance (harder method)
	Install nginx
	Install the configuration file
	Start nginx
	Make sure your local django application is accessible over the network
	Make Commcare use your local IP address
	Rebuild and redeploy your application

	Directly Modifying App Builds (CCZ files)
	Adding CommCare Builds to CommCare HQ
	Using a management command
	In the web UI

	Web Apps JavaScript
	System Architecture
	Is Web Apps Part of HQ? Yes and No.
	Example: Case Search

	Anatomy of a Web Apps Feature
	Example: Registration from Case List

	JavaScript Overview
	JavaScript Vocabulary
	Apps
	Users
	Menus
	Sessions

	JavaScript Directory Structure
	form_entry
	formplayer
	Miscellany
	debugger
	preview_app
	config.js
	formplayer_inline.js
	utils.js
	markdown.js

	JavaScript Architectural Concepts
	Persistence
	Application
	Regions
	Backbone.Radio and Events
	Routing, URLs, and Middleware
	Tests

	Marionette Views
	template and getTemplate
	tagName, className, and attributes
	initialize, templateContext, and onRender
	ui, events, and modelEvents
	childView, childViewContainer, and childViewOptions

	Formplayer in HQ
	What Is Formplayer?
	Repository Overview
	Relevant Architectural Decisions
	Sandboxes
	Request routing
	Routing implications for adding and removing machines
	Balancing issues for large numbers of machines

	Navigation
	The CommCare Session
	Screens
	Selections
	Replaying sessions

	Case Search and Claim
	Alternate Case Search Workflows

	Device Restore Optimization
	Dealing with shards
	Data Structure
	Case Study: UATBC case structure
	Algorithm to minimize queries while sharding on case ID
	One query to rule them all.
	Q & A

	Locations
	Location Permissions
	Normal Access
	Restricted Access and Whitelist
	How data is associated with locations
	Whitelist Implementation

	Reporting
	Recommended approaches for building reports
	Example Custom Report Scaffolding

	Hooking up reports to CommCare HQ
	Reporting on data stored in SQL
	Extending the SqlData class

	Report API

	Reporting: Maps in HQ
	What is the “Maps Report”?
	Orientation
	Styling
	Data Sources
	report
	legacyreport
	case
	csv and geojson

	Display Configuration
	Raw vs. Formatted Data

	Exports
	Change Feeds
	What they are
	Architecture
	Topics
	Document Stores

	Publishing changes
	From Couch
	From SQL
	From anywhere else

	Subscribing to changes
	Porting a new pillow
	Mapping the above to CommCare-specific details
	Topics
	Contents of the feed

	Pillows
	Overview
	What are pillows
	Why do we need pillows
	How do pillows receive changes
	Why the name

	Deconstructing a Pillow
	Change Feed
	Checkpoint
	Processors
	Change Event Handler

	Error Handling
	Errors
	Retries

	Monitoring
	Troubleshooting
	A pillow is falling behind
	Optimizing a processor
	Parallel Processors
	Rewound Checkpoint
	Many pillow exceptions

	Problem with checkpoint for pillow name: First available topic offset for topic is num1 but needed num2

	Pillows
	Processors

	Monitoring Email Events with Amazon SES
	User Configurable Reporting
	Data Flow
	Data Sources
	Data Source Filtering
	Filter type overview
	Expressions
	JSON snippets for expressions
	Constant Expression
	Property Name Expression
	Property Path Expression
	Jsonpath Expression
	Conditional Expression
	Switch Expression
	Coalesce Expression
	Array Index Expression
	Split String Expression
	Iterator Expression
	Base iteration number expressions
	Related document expressions
	Ancestor location expression
	Nested expressions
	Dict expressions
	“Add Days” expressions
	“Add Hours” expressions
	“Add Months” expressions
	“Diff Days” expressions
	“Month Start Date” and “Month End Date” expressions
	“Evaluator” expression
	‘Get Case Sharing Groups’ expression
	‘Get Reporting Groups’ expression
	Filter, Sort, Map and Reduce Expressions
	map_items Expression
	filter_items Expression
	sort_items Expression
	reduce_items Expression
	flatten expression

	Named Expressions

	Boolean Expression Filters
	Operators

	Compound filters
	“And” Filters
	“Or” Filters
	“Not” Filters

	Practical Examples

	Indicators
	Indicator Properties
	Indicator types
	Boolean indicators
	Expression indicators
	Choice list indicators
	Ledger Balance Indicators

	Practical notes for creating indicators
	Fractions

	Saving Multiple Rows per Case/Form
	Data Cleaning and Validation

	Report Configurations
	Samples
	Report Filters
	Numeric Filters
	Date filters
	Quarter filters
	Pre-Filters
	Dynamic choice lists
	Choice providers

	Choice lists
	Drilldown by Location
	Internationalization

	Report Columns
	Field columns
	Percent columns
	Formats

	AggregateDateColumn
	IntegerBucketsColumn
	SumWhenColumn and SumWhenTemplateColumn
	Expanded Columns
	Expression columns
	The “aggregation” column property
	Column IDs

	Calculating Column Totals
	Internationalization

	Aggregation
	No aggregation
	Aggregate by ‘username’ column
	Aggregate by two columns

	Transforms
	Translations and arbitrary mappings
	Displaying Readable User Name (instead of user ID)
	Displaying username instead of user ID
	Displaying username minus @domain.commcarehq.org instead of user ID
	Displaying owner name instead of owner ID
	Displaying month name instead of month index
	Rounding decimals
	Generic number formatting
	Round to the nearest whole number
	Rich text formatting with Markdown
	Always round to 3 decimal places

	Date formatting
	Converting an ethiopian date string to a gregorian date
	Converting a gregorian date string to an ethiopian date

	Charts
	Pie charts
	Aggregate multibar charts
	Multibar charts

	Sort Expression
	Distinct On
	Pick distinct by a single column
	Pick distinct result based on two columns

	Mobile UCR
	Filters
	Custom Calendar Month

	Export
	Export example

	Practical Notes
	Getting Started
	Static data sources
	Static configurable reports
	Custom configurable reports
	Extending User Configurable Reports
	Scaling UCR
	Profiling data sources
	Faster Reporting
	Asynchronous Indicators

	Inspecting database tables

	UCR Examples
	Data source filters
	Filters on forms
	Filter by a specific form type using the XMLNS
	Filter by a set of form types using the XMLNS

	Filters on cases
	Filter by a specific case type
	Filter by multiple case types
	Filter by only open cases

	Data source indicators
	Count every contributing row (form or case)
	Save a form property directly to a table
	Submission date (received on)
	User ID
	A text or choice property

	Related doc lookups
	Get an owner name - whether it’s a user, group or location
	Get a case property from a form that modifies the case
	Get a custom user data property from a form submission

	Getting the parent case ID from a case
	Getting the location type from a location doc id
	Getting a location’s parent ID

	Base Item Expressions
	Emit multiple rows (one per non-empty case property)
	Emit multiple rows of complex data
	Evaluator Examples
	Age in years to age in months
	weight_gain example
	diff_seconds example
	Date format

	Getting forms submitted for a case
	Getting forms submitted from specific forms for a case
	Getting the related case from a case
	Filter, Map, Reduce, Flatten and Sort expressions
	Getting number of forms of a particular type
	Getting latest form property

	Report examples
	Report filters
	Date filter for submission date

	Report columns
	Creating a date column for months
	Expanded columns

	Charts
	Impact 123 grouped by date

	UCR FAQ
	What is UCR?
	Report Errors

	Messaging in CommCare HQ
	Messaging Definitions
	General Messaging Terms
	Messaging Terms Commonly Used in CommCare HQ

	Contacts
	Users
	Cases
	Future State

	Outbound SMS
	Inbound SMS
	SMS Backends
	Outbound
	Inbound
	Rate Limiting
	Load Balancing
	Backend Selection

	Scheduled Messages
	Definitions
	Conditional Alerts / Case Update Rules
	Lifecycle of a Rule
	Queueing
	Event Handlers

	Keywords

	API
	Bulk User Resource
	Supported Parameters:

	CommCare FHIR Integration
	Forwarding Cases to a FHIR API
	Overview
	Data design
	App building
	Searching for patients by name
	Multiple values from a single question
	A note about using advanced modules

	Mapping using the Data Dictionary
	Mapping using the Admin interface
	Testing

	Importing cases from a remote FHIR service
	Overview
	Configuring a FHIRImportConfig
	Mapping imported FHIR resource properties
	Configuring related resources
	Testing FHIRImportConfig configuration

	The FHIR API
	Using the FHIR API
	A CommCare HQ Sandbox
	A Reference API Client

	Mapping case properties using the Data Dictionary
	Advanced mapping using the Admin interface

	The MOTECH OpenMRS & Bahmni Module
	OpenmrsRepeater
	OpenMRS Repeater Location
	OpenmrsConfig
	An OpenMRS Patient
	OpenmrsCaseConfig
	PatientFinder
	Creating Missing Patients
	WeightedPropertyPatientFinder

	OpenmrsFormConfig
	Provider
	Atom Feed Integration
	Adding cases for OpenMRS patients
	Importing OpenMRS Encounters
	How to Inspect an Observation or a Diagnosis

	How Data Mapping Works
	Different Sources of Values
	Data Types
	Import-Only and Export-Only Values
	Getting Values From JSON Documents
	The value_source Module

	General Overview
	What is SSO?
	Types of Protocols
	How Does SSO Work?

	Architecture
	IdentityProvider
	AuthenticatedEmailDomain
	UserExemptFromSingleSignOn
	TrustedIdentityProvider

	Local Setup
	Pre-Requisites
	Create a Project
	Create an Enterprise Software Plan
	Update the Billing Account for Initial Project
	Add more projects to this subscription

	Configure an Identity Provider

	Adding a New Identity Provider Type
	Before Beginning
	What Protocol will be used?

	Steps for Adding the IdP Type
	1. Make model changes and add migrations
	2. Test out the new provider type locally or on staging
	3. Log in as an SSO user
	4. Walk through workflows with our technical writer
	5. Initiate QA
	6. Determine whether a penetration test is required
	7. Pilot test with the Enterprise Partner on Production

	Internationalization
	How translations work
	Concrete Examples

	Tagging strings in views
	Using gettext_lazy
	gettext_lazy, a cautionary tale

	Tagging strings in template files
	Tagging strings in JavaScript
	Keeping translations up to date

	UI Helpers
	Paginated CRUD View
	The Basic Paginated View
	Allowing Creation in your Paginated View
	Allowing Updating in your Paginated View
	Allowing Deleting in your Paginated View
	Refreshing The Whole List Base on Update

	Using Class-Based Views in CommCare HQ
	The Base Classes
	A Basic (Centered) Page
	A Section (Two-Column) Page

	Adding to Urlpatterns
	Hierarchy
	Permissions
	GETs and POSTs (and other http methods)
	Limiting HTTP Methods

	Forms in HQ
	Making forms CSRF safe

	Dimagi JavaScript Guide
	Table of contents
	Static Files Organization
	Managing Dependencies
	How do I know whether or not I’m working with RequireJS?
	How do I write a new page?
	How do I add a new dependency to an existing page?
	RequireJS
	Non-RequireJS

	How close are we to a world where we’ll just have one set of conventions?
	Why aren’t we using something more fully-featured, more modern, or cooler than RequireJS?

	Historical Background on Module Patterns
	The Crockford Pattern
	hqDefine

	RequireJS Migration Guide
	Background: modules and pages
	Basic Migration Process
	Add requirejs_main tag and remove <script> tags
	Add dependencies
	Test

	Troubleshooting
	Troubleshooting migration issues
	Troubleshooting the RequireJS build process

	Third-Party Libraries
	jQuery
	Underscore
	Knockout
	Backbone and Marionette
	Yarn

	External Packages
	Yarn
	Yarn packages
	Specifying packages in package.json
	Using Yarn packages in HQ

	Integration Patterns
	JavaScript in Django Templates
	Initial Page Data in Tests
	Partials

	I18n
	Django URLs
	Toggles and Feature Previews
	Domain Privileges
	Remote Method Invocation

	Security
	Python
	JavaScript templates
	JavaScript code

	Static Files
	Collectstatic
	Compression
	1. Dev Setup: Server-side on the fly less compilation
	How is this enabled?

	2. Production-like Setup: Compress Offline
	How to enable?

	Map Files
	CDN
	CDN for HQ
	Cache Busting

	Inheritance
	Moving from classical inheritance to functional

	Code Review
	Language
	Translations
	Time Zones
	Security
	Delays and Errors
	Coding Standards

	Testing
	Best Practices
	Mocking

	Setup
	Test Organization
	Dependency Management
	Running tests from the command line
	Running tests from the browser
	Adding a new app or config

	Linting
	Running ESLint locally
	PyCharm
	Vim
	NeoMake
	Syntastic

	Configuring our lint rules
	Looking up rules
	Adding an exception

	Testing infrastructure
	Nose plugins

	Testing best practices
	Test set up
	Test tear down
	Using SimpleTestCase
	Squashing Migrations

	Analyzing Test Coverage
	Using coverage.py
	Make an HTML view of the data
	View the result in Vim

	Mocha Tests
	Adding a new app to test
	Creating an alternative configuration for an app

	Writing tests by using ES fakes
	How to set up your test to use ES fakes
	How to set up a new ES fake

	Profiling
	Practical guide to profiling a slow view or function
	Finding the slow function
	Getting profile output on stderr
	Getting a profile dump
	Profiling in production
	Creating a more useful output from the dump file
	Reading the output of the analysis file
	Aggregating data from multiple runs
	Additional references

	Memory profiling

	Caching and Memoization
	Memoized
	Quickcache
	The Differences
	Lifecycle
	Scope
	Decorating various things
	Identifying cached values
	What can be cached
	Invalidation
	Other ways of caching

	Plugins
	CommTrack
	What happens during a CommTrack submission?
	Submitting a stock report via CommCare

	Elasticsearch
	Overview
	Indexes
	Keeping indexes up-to-date
	Changing a mapping or adding data
	Adding data to an index
	Building the new index
	Updating indexes in a production environment

	How to un-bork your broken indexes
	Querying Elasticsearch - Best Practices
	Use ESQuery when possible
	Prefer “get” to “search”
	Prefer scroll queries
	Prefer filter to query
	Use size(0) with aggregations

	Elasticsearch App
	Elasticsearch Index Management
	Creating Elasticsearch Index Migrations
	Updating Elastic Index Mappings
	Comparing Mappings In Code Against Live Indexes

	Elastic Index Tuning Configurations

	Adapter Design
	Design Details
	Reindex Procedure Details

	Elastic Client Adapters
	Management Adapter
	Document Adapters
	Multiplexing Document Adapters

	Tombstone
	Code Documentation

	Querying Elasticsearch
	ESQuery
	Basic usage
	Filtering
	Filtering Specific Indices
	Language

	Available Filters
	Available Queries
	Aggregate Queries
	AppES
	UserES
	CaseES
	FormES
	DomainES
	SMSES

	Middleware
	What is middleware?
	TimeoutMiddleware

	Using the shared NFS drive
	Using apache / nginx to handle downloads
	Saving uploads to the NFS drive

	How to use and reference forms and cases programatically
	Model acessors
	Unit Tests
	Cleaning up

	Playing nice with Cloudant/CouchDB
	Celery
	How to use celery
	Best practices
	Queues
	Soil
	Option 1
	Option 2

	Testing
	Other references

	Configuring SQL Databases in CommCare
	Auditcare Data
	Synclog Data
	UCR Data
	Sharded Form and Case data
	Rules for shards

	Sending read queries to standby databases
	Using standbys with the plproxy cluster
	Routing queries to standbys

	Metrics
	CommCare Infrastructure Metrics
	General Host
	Gunicorn
	Nginx
	PostgreSQL
	Elasticsearch
	CouchDB
	Kafka
	Broker Metrics
	Producer Metrics
	Consumer Metrics

	Zookeeper
	Celery
	RabbitMQ

	CommCare Extensions
	Where to put custom code
	Extensions Points
	Create an extension point
	Registering an extension point implementation
	Calling an extension point
	Formatting results

	List Extension Points
	Custom Modules
	COVID: Available Actions
	COVID: Available Criteria

	Migrations in Practice
	Background
	Definitions
	General Principles
	Practical Considerations

	Example Migration: User Logging
	Common types of migrations
	Simple
	User Logging Example

	Multiple deploys
	User Logging Example

	Single Deploy
	User Logging Example

	Best practices for data migrations in Python

	Auto-Managed Migration Pattern
	Pattern Components
	Django Migration Code Example
	Real-life example

	Migrating Database Definitions
	General
	Adding Data
	Postgres
	ElasticSearch
	CouchDB

	Removing Data
	General
	Couch
	ElasticSearch

	Querying Data
	Postgres
	Couch

	Migration Patterns and Best Practices

	Migrating models from couch to postgres
	Conceptual Steps
	Practical Steps
	PR 1: Add SQL model and migration management command, write to SQL
	PR 2: Verify migration and read from SQL
	PR 3: Cleanup

	Current State of Migration

	1. Record architecture decisions
	Status
	Context
	Decision
	Consequences

	2. Keep static UCR configurations in memory
	Status
	Context
	Decision
	Consequences

	3. Remove warehouse database
	Status
	Context
	Decision
	Consequences

	Documenting
	Index
	Sphinx
	Read the Docs
	Troubleshooting
	Replicating the build environment

	Writing Documentation
	reStructuredText
	Editors
	Examples
	Section Header

	Indices and tables
	Python Module Index
	Index

